Time-Series Transfer Learning: An Early Stage Imbalance Fault Detection Method Based on Feature Enhancement and Improved Support Vector Data Description
Early stage fault detection plays a pivotal role in Industrial equipment accidents avoidance and scientific maintenance. While limited by the complex operation background, its application encounters with the conundrum of fault feature indistinctness. To address the challenge, a time-series transfer...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2023-08, Vol.70 (8), p.8488-8498 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8498 |
---|---|
container_issue | 8 |
container_start_page | 8488 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 70 |
creator | Ni, Xueqing Yang, Dongsheng Zhang, Huaguang Qu, Fuming Qin, Jia |
description | Early stage fault detection plays a pivotal role in Industrial equipment accidents avoidance and scientific maintenance. While limited by the complex operation background, its application encounters with the conundrum of fault feature indistinctness. To address the challenge, a time-series transfer learning (TSTL) method is proposed, which contains two phases: first, early stage series are transferred to their corresponding serious stage for fault feature enhancement. Moreover, due to the improvement of model structure and loss function, the limitation of mismatched working condition is well-weaken. Second, a transferred fault mode recognition model is trained by using transferred normal series that provides a novel solution for data imbalance. Finally, the TSTL method is verified by actual vibration datasets of power pole tower bolts. Its superiority in feature transfer and fault detection is confirmed by several groups of comparative experiments and results demonstrate TSTL outperforms mainstream methods. |
doi_str_mv | 10.1109/TIE.2022.3229351 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9994777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9994777</ieee_id><sourcerecordid>2787704722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-27e8cf13ee03534ccdaf151b3b9b00fddb8b16282221d4cfacb2ea1c984b12f3</originalsourceid><addsrcrecordid>eNo9kUFLwzAUgIMoOKd3wUvAc2eStkvrbbpNBxMPK17La_q6dbRpTVJh_8Sfa8aGpxD43pfwPULuOZtwztKnbLWYCCbEJBQiDWN-QUY8jmWQplFySUZMyCRgLJpekxtr94zxKObxiPxmdYvBBk2NlmYGtK3Q0DWC0bXePtOZpgswzYFuHGyRrtoCGtAK6RKGxtE5OlSu7jT9QLfrSvoCFkvq70sENxikC7078i1qR0GX3tCb7sczm6HvO-Polxd0hs7BgddZZer-KLwlVxU0Fu_O55hky0X2-h6sP99Wr7N1oEQcuUBITFTFQ0QWxmGkVAkVj3kRFmnBWFWWRVLwqUiEELyMVAWqEAhcpUlUcFGFY_J40vpffQ9oXb7vBqP9i7kvJiWLpBCeYidKmc5ag1Xem7oFc8g5y4_5c58_P-bPz_n9yMNppEbEfzz165BShn-fFYMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787704722</pqid></control><display><type>article</type><title>Time-Series Transfer Learning: An Early Stage Imbalance Fault Detection Method Based on Feature Enhancement and Improved Support Vector Data Description</title><source>IEEE Electronic Library (IEL)</source><creator>Ni, Xueqing ; Yang, Dongsheng ; Zhang, Huaguang ; Qu, Fuming ; Qin, Jia</creator><creatorcontrib>Ni, Xueqing ; Yang, Dongsheng ; Zhang, Huaguang ; Qu, Fuming ; Qin, Jia</creatorcontrib><description>Early stage fault detection plays a pivotal role in Industrial equipment accidents avoidance and scientific maintenance. While limited by the complex operation background, its application encounters with the conundrum of fault feature indistinctness. To address the challenge, a time-series transfer learning (TSTL) method is proposed, which contains two phases: first, early stage series are transferred to their corresponding serious stage for fault feature enhancement. Moreover, due to the improvement of model structure and loss function, the limitation of mismatched working condition is well-weaken. Second, a transferred fault mode recognition model is trained by using transferred normal series that provides a novel solution for data imbalance. Finally, the TSTL method is verified by actual vibration datasets of power pole tower bolts. Its superiority in feature transfer and fault detection is confirmed by several groups of comparative experiments and results demonstrate TSTL outperforms mainstream methods.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2022.3229351</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data imbalance ; Data models ; early stage fault detection ; Employee welfare ; Fault detection ; feature enhancement ; Feature extraction ; Generative adversarial networks ; Generators ; Learning ; mismatched working condition ; power pole tower ; Task analysis ; Time series</subject><ispartof>IEEE transactions on industrial electronics (1982), 2023-08, Vol.70 (8), p.8488-8498</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c254t-27e8cf13ee03534ccdaf151b3b9b00fddb8b16282221d4cfacb2ea1c984b12f3</citedby><cites>FETCH-LOGICAL-c254t-27e8cf13ee03534ccdaf151b3b9b00fddb8b16282221d4cfacb2ea1c984b12f3</cites><orcidid>0000-0003-1262-5975 ; 0000-0002-2375-9824 ; 0000-0002-8072-9568 ; 0000-0002-4102-5672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9994777$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9994777$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ni, Xueqing</creatorcontrib><creatorcontrib>Yang, Dongsheng</creatorcontrib><creatorcontrib>Zhang, Huaguang</creatorcontrib><creatorcontrib>Qu, Fuming</creatorcontrib><creatorcontrib>Qin, Jia</creatorcontrib><title>Time-Series Transfer Learning: An Early Stage Imbalance Fault Detection Method Based on Feature Enhancement and Improved Support Vector Data Description</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Early stage fault detection plays a pivotal role in Industrial equipment accidents avoidance and scientific maintenance. While limited by the complex operation background, its application encounters with the conundrum of fault feature indistinctness. To address the challenge, a time-series transfer learning (TSTL) method is proposed, which contains two phases: first, early stage series are transferred to their corresponding serious stage for fault feature enhancement. Moreover, due to the improvement of model structure and loss function, the limitation of mismatched working condition is well-weaken. Second, a transferred fault mode recognition model is trained by using transferred normal series that provides a novel solution for data imbalance. Finally, the TSTL method is verified by actual vibration datasets of power pole tower bolts. Its superiority in feature transfer and fault detection is confirmed by several groups of comparative experiments and results demonstrate TSTL outperforms mainstream methods.</description><subject>Data imbalance</subject><subject>Data models</subject><subject>early stage fault detection</subject><subject>Employee welfare</subject><subject>Fault detection</subject><subject>feature enhancement</subject><subject>Feature extraction</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Learning</subject><subject>mismatched working condition</subject><subject>power pole tower</subject><subject>Task analysis</subject><subject>Time series</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kUFLwzAUgIMoOKd3wUvAc2eStkvrbbpNBxMPK17La_q6dbRpTVJh_8Sfa8aGpxD43pfwPULuOZtwztKnbLWYCCbEJBQiDWN-QUY8jmWQplFySUZMyCRgLJpekxtr94zxKObxiPxmdYvBBk2NlmYGtK3Q0DWC0bXePtOZpgswzYFuHGyRrtoCGtAK6RKGxtE5OlSu7jT9QLfrSvoCFkvq70sENxikC7078i1qR0GX3tCb7sczm6HvO-Polxd0hs7BgddZZer-KLwlVxU0Fu_O55hky0X2-h6sP99Wr7N1oEQcuUBITFTFQ0QWxmGkVAkVj3kRFmnBWFWWRVLwqUiEELyMVAWqEAhcpUlUcFGFY_J40vpffQ9oXb7vBqP9i7kvJiWLpBCeYidKmc5ag1Xem7oFc8g5y4_5c58_P-bPz_n9yMNppEbEfzz165BShn-fFYMA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Ni, Xueqing</creator><creator>Yang, Dongsheng</creator><creator>Zhang, Huaguang</creator><creator>Qu, Fuming</creator><creator>Qin, Jia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1262-5975</orcidid><orcidid>https://orcid.org/0000-0002-2375-9824</orcidid><orcidid>https://orcid.org/0000-0002-8072-9568</orcidid><orcidid>https://orcid.org/0000-0002-4102-5672</orcidid></search><sort><creationdate>20230801</creationdate><title>Time-Series Transfer Learning: An Early Stage Imbalance Fault Detection Method Based on Feature Enhancement and Improved Support Vector Data Description</title><author>Ni, Xueqing ; Yang, Dongsheng ; Zhang, Huaguang ; Qu, Fuming ; Qin, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-27e8cf13ee03534ccdaf151b3b9b00fddb8b16282221d4cfacb2ea1c984b12f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Data imbalance</topic><topic>Data models</topic><topic>early stage fault detection</topic><topic>Employee welfare</topic><topic>Fault detection</topic><topic>feature enhancement</topic><topic>Feature extraction</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Learning</topic><topic>mismatched working condition</topic><topic>power pole tower</topic><topic>Task analysis</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Xueqing</creatorcontrib><creatorcontrib>Yang, Dongsheng</creatorcontrib><creatorcontrib>Zhang, Huaguang</creatorcontrib><creatorcontrib>Qu, Fuming</creatorcontrib><creatorcontrib>Qin, Jia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ni, Xueqing</au><au>Yang, Dongsheng</au><au>Zhang, Huaguang</au><au>Qu, Fuming</au><au>Qin, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Series Transfer Learning: An Early Stage Imbalance Fault Detection Method Based on Feature Enhancement and Improved Support Vector Data Description</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>70</volume><issue>8</issue><spage>8488</spage><epage>8498</epage><pages>8488-8498</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Early stage fault detection plays a pivotal role in Industrial equipment accidents avoidance and scientific maintenance. While limited by the complex operation background, its application encounters with the conundrum of fault feature indistinctness. To address the challenge, a time-series transfer learning (TSTL) method is proposed, which contains two phases: first, early stage series are transferred to their corresponding serious stage for fault feature enhancement. Moreover, due to the improvement of model structure and loss function, the limitation of mismatched working condition is well-weaken. Second, a transferred fault mode recognition model is trained by using transferred normal series that provides a novel solution for data imbalance. Finally, the TSTL method is verified by actual vibration datasets of power pole tower bolts. Its superiority in feature transfer and fault detection is confirmed by several groups of comparative experiments and results demonstrate TSTL outperforms mainstream methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2022.3229351</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1262-5975</orcidid><orcidid>https://orcid.org/0000-0002-2375-9824</orcidid><orcidid>https://orcid.org/0000-0002-8072-9568</orcidid><orcidid>https://orcid.org/0000-0002-4102-5672</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2023-08, Vol.70 (8), p.8488-8498 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_ieee_primary_9994777 |
source | IEEE Electronic Library (IEL) |
subjects | Data imbalance Data models early stage fault detection Employee welfare Fault detection feature enhancement Feature extraction Generative adversarial networks Generators Learning mismatched working condition power pole tower Task analysis Time series |
title | Time-Series Transfer Learning: An Early Stage Imbalance Fault Detection Method Based on Feature Enhancement and Improved Support Vector Data Description |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Series%20Transfer%20Learning:%20An%20Early%20Stage%20Imbalance%20Fault%20Detection%20Method%20Based%20on%20Feature%20Enhancement%20and%20Improved%20Support%20Vector%20Data%20Description&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Ni,%20Xueqing&rft.date=2023-08-01&rft.volume=70&rft.issue=8&rft.spage=8488&rft.epage=8498&rft.pages=8488-8498&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2022.3229351&rft_dat=%3Cproquest_RIE%3E2787704722%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787704722&rft_id=info:pmid/&rft_ieee_id=9994777&rfr_iscdi=true |