Haptic volume interaction with anatomic models at sub-voxel resolution
An approach for haptic volume interaction with high resolution voxel-based anatomic models is presented. The haptic rendering is based on a multi-point collision detection approach which provides realistic tool interaction with the models. Both haptics and graphics are rendered at sub-voxel resoluti...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An approach for haptic volume interaction with high resolution voxel-based anatomic models is presented. The haptic rendering is based on a multi-point collision detection approach which provides realistic tool interaction with the models. Both haptics and graphics are rendered at sub-voxel resolution, which leads to a high level of detail and enables the exploration of the models at any scale. Forces are calculated at an update rate of 6000 Hz and sent to a 3-degree-of-freedom (3-DOF) force-feedback device. Compared to point-based haptic rendering, the unique approach of the multi-point collision detection in combination with sub-voxel rendering provides more realistic and very detailed haptic sensations. As a main application, a simulator for petrous bone surgery was developed. With a simulated drill, bony structure can be removed and the access path to the middle ear can be studied. |
---|---|
DOI: | 10.1109/HAPTIC.2002.998942 |