The Stochastic Robustness of Nominal and Stochastic Model Predictive Control
In this work, we establish and compare the stochastic and deterministic robustness properties achieved by nominal model predictive control (MPC), stochastic MPC (SMPC), and a proposed constraint-tightened MPC (CMPC) formulation, which represents an idealized version of tube-based MPC. We consider th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2023-10, Vol.68 (10), p.1-13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we establish and compare the stochastic and deterministic robustness properties achieved by nominal model predictive control (MPC), stochastic MPC (SMPC), and a proposed constraint-tightened MPC (CMPC) formulation, which represents an idealized version of tube-based MPC. We consider three definitions of robustness for nonlinear systems and bounded disturbances: robust asymptotic stability (RAS), robust asymptotic stability in expectation (RASiE), and RASiE w.r.t. the stage cost \ell (\cdot) used in these MPC formulations (\ell-RASiE). Via input-to-state stability (ISS) and stochastic ISS (SISS) Lyapunov functions, we establish that MPC, subject to sufficiently small disturbances, and CMPC ensure all three definitions of robustness without a stochastic objective function. While SMPC also ensures RASiE and \ell-RASiE, SMPC does not guarantee RAS for nonlinear systems. Through a few simple examples, we illustrate the implications of these results and demonstrate that, depending on the definition of robustness considered, SMPC is not necessarily more robust than nominal MPC even if the disturbance model is exact. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2022.3226712 |