Recurrent Neural Network Training with Convex Loss and Regularization Functions by Extended Kalman Filtering

This paper investigates the use of extended Kalman filtering to train recurrent neural networks with rather general convex loss functions and regularization terms on the network parameters, including \ell _{1}-regularization. We show that the learning method is competitive with respect to stochastic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2023-09, Vol.68 (9), p.1-8
1. Verfasser: Bemporad, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the use of extended Kalman filtering to train recurrent neural networks with rather general convex loss functions and regularization terms on the network parameters, including \ell _{1}-regularization. We show that the learning method is competitive with respect to stochastic gradient descent in a nonlinear system identification benchmark and in training a linear system with binary outputs. We also explore the use of the algorithm in data-driven nonlinear model predictive control and its relation with disturbance models for offset-free closed-loop tracking.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2022.3222750