On a linear Gromov-Wasserstein distance

Gromov-Wasserstein distances are generalization of Wasserstein distances, which are invariant under distance preserving transformations. Although a simplified version of optimal transport in Wasserstein spaces, called linear optimal transport (LOT), was successfully used in practice, there does not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2022, Vol.31, p.1-1
Hauptverfasser: Beier, Florian, Beinert, Robert, Steidl, Gabriele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gromov-Wasserstein distances are generalization of Wasserstein distances, which are invariant under distance preserving transformations. Although a simplified version of optimal transport in Wasserstein spaces, called linear optimal transport (LOT), was successfully used in practice, there does not exist a notion of linear Gromov-Wasserstein distances so far. In this paper, we propose a definition of linear Gromov-Wasserstein distances. We motivate our approach by a generalized LOT model, which is based on barycentric projection maps of transport plans. Numerical examples illustrate that the linear Gromov-Wasserstein distances, similarly as LOT, can replace the expensive computation of pairwise Gromov-Wasserstein distances in applications like shape classification.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2022.3221286