3-Component Sparse S Transform
In this paper, the sparse S transform is extended to 3-component data and considered in the framework of the sparse inverse theory. The 3-component sparse S transform is formulated as a constrained optimization where the group sparsity constraint is minimized subject to a data fidelity constraint. T...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the sparse S transform is extended to 3-component data and considered in the framework of the sparse inverse theory. The 3-component sparse S transform is formulated as a constrained optimization where the group sparsity constraint is minimized subject to a data fidelity constraint. Then a fast and efficient algorithm based on the alternative split Bregman technique is employed to solve the optimization. Numerical experiments using synthetic and real seismic data show that the proposed 3-component sparse S transform automatically generates higher resolution TF maps compared to single-component sparse decompositions, which has application in phase splitting and earthquake analysis. |
---|---|
ISSN: | 0196-2892 |
DOI: | 10.1109/TGRS.2022.3219420 |