3-Component Sparse S Transform

In this paper, the sparse S transform is extended to 3-component data and considered in the framework of the sparse inverse theory. The 3-component sparse S transform is formulated as a constrained optimization where the group sparsity constraint is minimized subject to a data fidelity constraint. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, p.1-1
Hauptverfasser: Kakhki, Mohsen Kazemnia, Mokhtari, Ahmadreza, Mansur, Webe Joao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the sparse S transform is extended to 3-component data and considered in the framework of the sparse inverse theory. The 3-component sparse S transform is formulated as a constrained optimization where the group sparsity constraint is minimized subject to a data fidelity constraint. Then a fast and efficient algorithm based on the alternative split Bregman technique is employed to solve the optimization. Numerical experiments using synthetic and real seismic data show that the proposed 3-component sparse S transform automatically generates higher resolution TF maps compared to single-component sparse decompositions, which has application in phase splitting and earthquake analysis.
ISSN:0196-2892
DOI:10.1109/TGRS.2022.3219420