O(N/sup 3/ log N) backprojection algorithm for the 3-D Radon transform
We present a novel backprojection algorithm for three-dimensional (3-D) Radon transform data that requires O(N/sup 3/ log/sub 2/ N) operations for reconstruction of an N/spl times/N/spl times/N volume from O(N/sup 2/) plane-integral projections. Our algorithm uses a hierarchical decomposition of the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2002-02, Vol.21 (2), p.76-88 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a novel backprojection algorithm for three-dimensional (3-D) Radon transform data that requires O(N/sup 3/ log/sub 2/ N) operations for reconstruction of an N/spl times/N/spl times/N volume from O(N/sup 2/) plane-integral projections. Our algorithm uses a hierarchical decomposition of the 3-D Radon transform to recursively decompose the backprojection operation. Simulations are presented demonstrating reconstruction quality comparable to the standard filtered backprojection, which requires O(N/sup 5/) computations under the same circumstances. |
---|---|
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/42.993127 |