Fault-Tolerant Ad Hoc On-Demand Routing Protocol for Mobile Ad Hoc Networks

Mobile ad hoc networks (MANETs) are particularly suited for scenarios that demand rapid deployment of a communication system without any existing network resources. For instance, a MANET can facilitate the intercommunication process between members of a rescue party in a natural disaster, where the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.1-1
Hauptverfasser: Hoang, Duc N. M., Rhee, Jong Myung, Park, Sang Yoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mobile ad hoc networks (MANETs) are particularly suited for scenarios that demand rapid deployment of a communication system without any existing network resources. For instance, a MANET can facilitate the intercommunication process between members of a rescue party in a natural disaster, where the underlying routing protocol is crucial to maintaining the dissemination capability of data-critical packets. However, routing protocols for MANETs are limited by the communication range of nodes, their high-speed mobility, and the capacity constraints of energy. Therefore, this study proposed a fault-tolerant ad hoc on-demand routing protocol (FT-AORP) that relies on these characteristics of MANET nodes to determine reliable paths for data transmission. Subsequently, two of the discovered paths were used to transmit the duplicates of an original data packet to maximize fault tolerance. Further, using the OMNeT++ network simulator, the performance of the proposed system was evaluated through extensive simulation experiments against three simulation parameters: the number of network nodes, node speed, and data packet sending rate. The simulation results demonstrated that FT-AORP greatly improved the packet delivery ratio, reduced end-to-end delay, and maintained a higher residual energy level of the transmission path, compared to other baseline routing protocols.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3216066