Joint Lifetime-Outage Optimization in Relay-Enabled IoT Networks-A Deep Reinforcement Learning Approach

Network lifetime maximization in Internet of things (IoT) is of paramount importance to ensure uninterrupted data transmission and reduce the frequency of battery replacement. This letter deals with the joint lifetime-outage optimization in relay-enabled IoT networks employing a multiple relay selec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2023-01, Vol.27 (1), p.1-1
Hauptverfasser: Heidarpour, Ali Reza, Heidarpour, Mohammad Reza, Ardakani, Masoud, Tellambura, Chintha, Uysal, Murat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Network lifetime maximization in Internet of things (IoT) is of paramount importance to ensure uninterrupted data transmission and reduce the frequency of battery replacement. This letter deals with the joint lifetime-outage optimization in relay-enabled IoT networks employing a multiple relay selection (MRS) scheme. The considered MRS problem is essentially a general nonlinear 0 - 1 programming which is NP-hard. In this work, we use the application of the double deep Q network (DDQN) algorithm to solve the MRS problem. Our results reveal that the proposed DDQN-MRS scheme can achieve superior performance than the benchmark MRS schemes.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2022.3214146