Privacy-preserving and Syscall-based Intrusion Detection System for IoT Spectrum Sensors Affected by Data Falsification Attacks

Crowdsensing platforms collect, process, transmit, and analyze spectrum data worldwide to optimize radio frequency spectrum usage. However, Internet-of-Things (IoT) spectrum sensors, performing some of the previous tasks, are exposed to software manipulation aiming to execute spectrum sensing data f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2023-05, Vol.10 (10), p.1-1
Hauptverfasser: Celdran, Alberto Huertas, Sanchez, Pedro Miguel Sanchez, Feng, Chao, Bovet, Gerome, Perez, Gregorio Martinez, Stiller, Burkhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Crowdsensing platforms collect, process, transmit, and analyze spectrum data worldwide to optimize radio frequency spectrum usage. However, Internet-of-Things (IoT) spectrum sensors, performing some of the previous tasks, are exposed to software manipulation aiming to execute spectrum sensing data falsification (SSDF) attacks to compromise data integrity and spectrum optimization. Novel intrusion detection systems (IDSs) combining device fingerprinting with Machine and Deep Learning (ML/DL) improve the limitation of traditional solutions and remove the necessity of redundant sensors and reputation mechanisms. However, they fail when detecting SSDF attacks accurately while protecting sensors privacy. This work proposes a novel host-based and federated learning-oriented IDS for IoT spectrum sensors that considers unsupervised ML/DL and fingerprints based on system calls. The framework detection performance and consumption of resources are analyzed in local and federated scenarios with six spectrum sensors deployed on Raspberry Pis. The obtained results significantly improve related work when detecting SSDF attacks while protecting sensors privacy, and consuming CPU, memory, and storage of sensors in a reduced manner.
ISSN:2327-4662
2327-4662
DOI:10.1109/JIOT.2022.3213889