Exploration of Scandium Doping in SbTe for Phase Change Memory Application

In this work, we fabricate and electrically demonstrate a 65-nm technology-compatible Phase change memory (PCM) pillar device using Sc-doped SbTe (ST) instead of GeSbTe (GST), for the first time fabricated on a 300-mm wafer in the 1T1R configuration. ST was chosen over GST to achieve a higher speed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2022-11, Vol.69 (11), p.6106-6112
Hauptverfasser: Barci, Marinela, Leonelli, Daniele, Zhou, Xue, Wang, Xiaojie, Garbin, Daniele, Jayakumar, Ganesh, Witters, Thomas, Vergel, Nathali Franchina, Kundu, Shreya, Palayam, Senthil Vadakupudhu, Jiao, Huifang, Wu, Hao, Kar, Gouri Sankar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6112
container_issue 11
container_start_page 6106
container_title IEEE transactions on electron devices
container_volume 69
creator Barci, Marinela
Leonelli, Daniele
Zhou, Xue
Wang, Xiaojie
Garbin, Daniele
Jayakumar, Ganesh
Witters, Thomas
Vergel, Nathali Franchina
Kundu, Shreya
Palayam, Senthil Vadakupudhu
Jiao, Huifang
Wu, Hao
Kar, Gouri Sankar
description In this work, we fabricate and electrically demonstrate a 65-nm technology-compatible Phase change memory (PCM) pillar device using Sc-doped SbTe (ST) instead of GeSbTe (GST), for the first time fabricated on a 300-mm wafer in the 1T1R configuration. ST was chosen over GST to achieve a higher speed and endurance due to its faster crystallization speed and reduced volume variation during switching. Detailed knobs on how to improve stack in terms of CD, thickness (of electrode and chalcogenide material), and Sc doping are presented. The optimized stack shows ac switching from 300 ns to 1~\mu \text{s} for SET and RESET with current in the order of milliamperes and programming voltage less than 2.5 V. The endurance shows marginal memory window degradation up to 1E8 cycles and more than 1-h retention at 85° is achieved for the optimized stack of C:Si/50-nm ST:Sc 6%. The fabricated devices show the potential to extend the PCM technology toward high-speed storage class memory (SCM) applications.
doi_str_mv 10.1109/TED.2022.3209639
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9912377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9912377</ieee_id><sourcerecordid>2727045722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-9cbcc58d4730da9004d001fddc754412f63cd5061bf2ac2e048e85d406f7cf0c3</originalsourceid><addsrcrecordid>eNo9kEtLAzEURoMoWKt7wU3A9dSbxySTZan1RUWhdR3SPNqUdjJmWrD_3qktri4XvvPdy0HolsCAEFAPs_HjgAKlA0ZBCabOUI-UpSyU4OIc9QBIVShWsUt01barbhWc0x56G_8065TNNqYap4Cn1tQu7jb4MTWxXuBY4-l85nFIGX8uTevxaGnqhcfvfpPyHg-bZh3tH36NLoJZt_7mNPvo62k8G70Uk4_n19FwUlgKYlsoO7e2rByXDJxRANx13wTnrCw5JzQIZl0JgswDNZZ64JWvSsdBBGkDWNZH98feJqfvnW-3epV2ue5OaiqpBF5KSrsUHFM2p7bNPugmx43Je01AH4zpzpg-GNMnYx1yd0Si9_4_rhShTEr2C80RZh4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727045722</pqid></control><display><type>article</type><title>Exploration of Scandium Doping in SbTe for Phase Change Memory Application</title><source>IEEE Electronic Library (IEL)</source><creator>Barci, Marinela ; Leonelli, Daniele ; Zhou, Xue ; Wang, Xiaojie ; Garbin, Daniele ; Jayakumar, Ganesh ; Witters, Thomas ; Vergel, Nathali Franchina ; Kundu, Shreya ; Palayam, Senthil Vadakupudhu ; Jiao, Huifang ; Wu, Hao ; Kar, Gouri Sankar</creator><creatorcontrib>Barci, Marinela ; Leonelli, Daniele ; Zhou, Xue ; Wang, Xiaojie ; Garbin, Daniele ; Jayakumar, Ganesh ; Witters, Thomas ; Vergel, Nathali Franchina ; Kundu, Shreya ; Palayam, Senthil Vadakupudhu ; Jiao, Huifang ; Wu, Hao ; Kar, Gouri Sankar</creatorcontrib><description>In this work, we fabricate and electrically demonstrate a 65-nm technology-compatible Phase change memory (PCM) pillar device using Sc-doped SbTe (ST) instead of GeSbTe (GST), for the first time fabricated on a 300-mm wafer in the 1T1R configuration. ST was chosen over GST to achieve a higher speed and endurance due to its faster crystallization speed and reduced volume variation during switching. Detailed knobs on how to improve stack in terms of CD, thickness (of electrode and chalcogenide material), and Sc doping are presented. The optimized stack shows ac switching from 300 ns to &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;1~\mu \text{s} &lt;/tex-math&gt;&lt;/inline-formula&gt; for SET and RESET with current in the order of milliamperes and programming voltage less than 2.5 V. The endurance shows marginal memory window degradation up to 1E8 cycles and more than 1-h retention at 85° is achieved for the optimized stack of C:Si/50-nm ST:Sc 6%. The fabricated devices show the potential to extend the PCM technology toward high-speed storage class memory (SCM) applications.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3209639</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chalcogenide ; Chalcogenides ; Crystallization ; Doping ; doping Sc ; Electrodes ; emerging memory technology ; Endurance ; GeSeTe ; Knobs ; nonvolatile memory ; Performance evaluation ; Phase change materials ; Phase change memory (PCM) ; Resistance ; SbTe (ST) ; Scandium ; storage class memory (SCM) ; Switches ; Switching</subject><ispartof>IEEE transactions on electron devices, 2022-11, Vol.69 (11), p.6106-6112</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c206t-9cbcc58d4730da9004d001fddc754412f63cd5061bf2ac2e048e85d406f7cf0c3</citedby><cites>FETCH-LOGICAL-c206t-9cbcc58d4730da9004d001fddc754412f63cd5061bf2ac2e048e85d406f7cf0c3</cites><orcidid>0000-0001-5557-8879 ; 0000-0002-5884-1043 ; 0000-0002-0855-3377 ; 0000-0001-8235-8695 ; 0000-0002-8528-9469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9912377$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9912377$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Barci, Marinela</creatorcontrib><creatorcontrib>Leonelli, Daniele</creatorcontrib><creatorcontrib>Zhou, Xue</creatorcontrib><creatorcontrib>Wang, Xiaojie</creatorcontrib><creatorcontrib>Garbin, Daniele</creatorcontrib><creatorcontrib>Jayakumar, Ganesh</creatorcontrib><creatorcontrib>Witters, Thomas</creatorcontrib><creatorcontrib>Vergel, Nathali Franchina</creatorcontrib><creatorcontrib>Kundu, Shreya</creatorcontrib><creatorcontrib>Palayam, Senthil Vadakupudhu</creatorcontrib><creatorcontrib>Jiao, Huifang</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Kar, Gouri Sankar</creatorcontrib><title>Exploration of Scandium Doping in SbTe for Phase Change Memory Application</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this work, we fabricate and electrically demonstrate a 65-nm technology-compatible Phase change memory (PCM) pillar device using Sc-doped SbTe (ST) instead of GeSbTe (GST), for the first time fabricated on a 300-mm wafer in the 1T1R configuration. ST was chosen over GST to achieve a higher speed and endurance due to its faster crystallization speed and reduced volume variation during switching. Detailed knobs on how to improve stack in terms of CD, thickness (of electrode and chalcogenide material), and Sc doping are presented. The optimized stack shows ac switching from 300 ns to &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;1~\mu \text{s} &lt;/tex-math&gt;&lt;/inline-formula&gt; for SET and RESET with current in the order of milliamperes and programming voltage less than 2.5 V. The endurance shows marginal memory window degradation up to 1E8 cycles and more than 1-h retention at 85° is achieved for the optimized stack of C:Si/50-nm ST:Sc 6%. The fabricated devices show the potential to extend the PCM technology toward high-speed storage class memory (SCM) applications.</description><subject>Chalcogenide</subject><subject>Chalcogenides</subject><subject>Crystallization</subject><subject>Doping</subject><subject>doping Sc</subject><subject>Electrodes</subject><subject>emerging memory technology</subject><subject>Endurance</subject><subject>GeSeTe</subject><subject>Knobs</subject><subject>nonvolatile memory</subject><subject>Performance evaluation</subject><subject>Phase change materials</subject><subject>Phase change memory (PCM)</subject><subject>Resistance</subject><subject>SbTe (ST)</subject><subject>Scandium</subject><subject>storage class memory (SCM)</subject><subject>Switches</subject><subject>Switching</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEURoMoWKt7wU3A9dSbxySTZan1RUWhdR3SPNqUdjJmWrD_3qktri4XvvPdy0HolsCAEFAPs_HjgAKlA0ZBCabOUI-UpSyU4OIc9QBIVShWsUt01barbhWc0x56G_8065TNNqYap4Cn1tQu7jb4MTWxXuBY4-l85nFIGX8uTevxaGnqhcfvfpPyHg-bZh3tH36NLoJZt_7mNPvo62k8G70Uk4_n19FwUlgKYlsoO7e2rByXDJxRANx13wTnrCw5JzQIZl0JgswDNZZ64JWvSsdBBGkDWNZH98feJqfvnW-3epV2ue5OaiqpBF5KSrsUHFM2p7bNPugmx43Je01AH4zpzpg-GNMnYx1yd0Si9_4_rhShTEr2C80RZh4</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Barci, Marinela</creator><creator>Leonelli, Daniele</creator><creator>Zhou, Xue</creator><creator>Wang, Xiaojie</creator><creator>Garbin, Daniele</creator><creator>Jayakumar, Ganesh</creator><creator>Witters, Thomas</creator><creator>Vergel, Nathali Franchina</creator><creator>Kundu, Shreya</creator><creator>Palayam, Senthil Vadakupudhu</creator><creator>Jiao, Huifang</creator><creator>Wu, Hao</creator><creator>Kar, Gouri Sankar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5557-8879</orcidid><orcidid>https://orcid.org/0000-0002-5884-1043</orcidid><orcidid>https://orcid.org/0000-0002-0855-3377</orcidid><orcidid>https://orcid.org/0000-0001-8235-8695</orcidid><orcidid>https://orcid.org/0000-0002-8528-9469</orcidid></search><sort><creationdate>20221101</creationdate><title>Exploration of Scandium Doping in SbTe for Phase Change Memory Application</title><author>Barci, Marinela ; Leonelli, Daniele ; Zhou, Xue ; Wang, Xiaojie ; Garbin, Daniele ; Jayakumar, Ganesh ; Witters, Thomas ; Vergel, Nathali Franchina ; Kundu, Shreya ; Palayam, Senthil Vadakupudhu ; Jiao, Huifang ; Wu, Hao ; Kar, Gouri Sankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-9cbcc58d4730da9004d001fddc754412f63cd5061bf2ac2e048e85d406f7cf0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chalcogenide</topic><topic>Chalcogenides</topic><topic>Crystallization</topic><topic>Doping</topic><topic>doping Sc</topic><topic>Electrodes</topic><topic>emerging memory technology</topic><topic>Endurance</topic><topic>GeSeTe</topic><topic>Knobs</topic><topic>nonvolatile memory</topic><topic>Performance evaluation</topic><topic>Phase change materials</topic><topic>Phase change memory (PCM)</topic><topic>Resistance</topic><topic>SbTe (ST)</topic><topic>Scandium</topic><topic>storage class memory (SCM)</topic><topic>Switches</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barci, Marinela</creatorcontrib><creatorcontrib>Leonelli, Daniele</creatorcontrib><creatorcontrib>Zhou, Xue</creatorcontrib><creatorcontrib>Wang, Xiaojie</creatorcontrib><creatorcontrib>Garbin, Daniele</creatorcontrib><creatorcontrib>Jayakumar, Ganesh</creatorcontrib><creatorcontrib>Witters, Thomas</creatorcontrib><creatorcontrib>Vergel, Nathali Franchina</creatorcontrib><creatorcontrib>Kundu, Shreya</creatorcontrib><creatorcontrib>Palayam, Senthil Vadakupudhu</creatorcontrib><creatorcontrib>Jiao, Huifang</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Kar, Gouri Sankar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barci, Marinela</au><au>Leonelli, Daniele</au><au>Zhou, Xue</au><au>Wang, Xiaojie</au><au>Garbin, Daniele</au><au>Jayakumar, Ganesh</au><au>Witters, Thomas</au><au>Vergel, Nathali Franchina</au><au>Kundu, Shreya</au><au>Palayam, Senthil Vadakupudhu</au><au>Jiao, Huifang</au><au>Wu, Hao</au><au>Kar, Gouri Sankar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploration of Scandium Doping in SbTe for Phase Change Memory Application</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>69</volume><issue>11</issue><spage>6106</spage><epage>6112</epage><pages>6106-6112</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this work, we fabricate and electrically demonstrate a 65-nm technology-compatible Phase change memory (PCM) pillar device using Sc-doped SbTe (ST) instead of GeSbTe (GST), for the first time fabricated on a 300-mm wafer in the 1T1R configuration. ST was chosen over GST to achieve a higher speed and endurance due to its faster crystallization speed and reduced volume variation during switching. Detailed knobs on how to improve stack in terms of CD, thickness (of electrode and chalcogenide material), and Sc doping are presented. The optimized stack shows ac switching from 300 ns to &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;1~\mu \text{s} &lt;/tex-math&gt;&lt;/inline-formula&gt; for SET and RESET with current in the order of milliamperes and programming voltage less than 2.5 V. The endurance shows marginal memory window degradation up to 1E8 cycles and more than 1-h retention at 85° is achieved for the optimized stack of C:Si/50-nm ST:Sc 6%. The fabricated devices show the potential to extend the PCM technology toward high-speed storage class memory (SCM) applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3209639</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5557-8879</orcidid><orcidid>https://orcid.org/0000-0002-5884-1043</orcidid><orcidid>https://orcid.org/0000-0002-0855-3377</orcidid><orcidid>https://orcid.org/0000-0001-8235-8695</orcidid><orcidid>https://orcid.org/0000-0002-8528-9469</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2022-11, Vol.69 (11), p.6106-6112
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_9912377
source IEEE Electronic Library (IEL)
subjects Chalcogenide
Chalcogenides
Crystallization
Doping
doping Sc
Electrodes
emerging memory technology
Endurance
GeSeTe
Knobs
nonvolatile memory
Performance evaluation
Phase change materials
Phase change memory (PCM)
Resistance
SbTe (ST)
Scandium
storage class memory (SCM)
Switches
Switching
title Exploration of Scandium Doping in SbTe for Phase Change Memory Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploration%20of%20Scandium%20Doping%20in%20SbTe%20for%20Phase%20Change%20Memory%20Application&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Barci,%20Marinela&rft.date=2022-11-01&rft.volume=69&rft.issue=11&rft.spage=6106&rft.epage=6112&rft.pages=6106-6112&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3209639&rft_dat=%3Cproquest_RIE%3E2727045722%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727045722&rft_id=info:pmid/&rft_ieee_id=9912377&rfr_iscdi=true