Robust regression for data with multiple structures

In many vision problems (e.g., stereo, motion) multiple structures can occur in the data, in which case several instances of the same model need to be recovered from a single data set. However, once the measurement noise becomes significantly large relative to the separation between the structures,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Haifeng Chen, Meer, P., Tyler, D.E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In many vision problems (e.g., stereo, motion) multiple structures can occur in the data, in which case several instances of the same model need to be recovered from a single data set. However, once the measurement noise becomes significantly large relative to the separation between the structures, the robust statistical methods commonly used in the vision community tend to fail. In this paper, we show that all these techniques are special cases of the general class of M-estimators with auxiliary scale, and explain their failure in the presence of noisy multiple structures. To be able to cope with data containing multiple structures the techniques innate to vision (Hough and RANSAC) should be combined with the robust methods customary in statistics. The implications of our analysis are illustrated by introducing a simple procedure for 2D multistructured data problematic for all known current techniques.
ISSN:1063-6919
DOI:10.1109/CVPR.2001.990649