Critique of "A Parallel Framework for Constraint-Based Bayesian Network Learning via Markov Blanket Discovery" by SCC Team From Peking University

Ankit Srivastava et al. (Srivastava et al. 2020) proposed a parallel framework for Constraint-Based Bayesian Network (BN) Learning via Markov Blanket Discovery (referred to as ramBLe) and implemented it over three existing BN learning algorithms, namely, GS, IAMB and Inter-IAMB. As part of the Stude...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2023-06, Vol.34 (6), p.1720-1722
Hauptverfasser: Si, Jiaqi, Guo, Junyi, Hao, Zhewen, He, Wenyang, Li, Ruihan, Pan, Yueyang, Fu, Zhenxin, Fan, Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ankit Srivastava et al. (Srivastava et al. 2020) proposed a parallel framework for Constraint-Based Bayesian Network (BN) Learning via Markov Blanket Discovery (referred to as ramBLe) and implemented it over three existing BN learning algorithms, namely, GS, IAMB and Inter-IAMB. As part of the Student Cluster Competition at SC21, we reproduce the computational efficiency of ramBLe on our assigned Oracle cluster. The cluster has 4x36 cores in total with 100 Gbps RoCE v2 support and is equipped with CentOS-compatible Oracle Linux. Our experiments, covering the same three algorithms of the original ramBLe article (Srivastava et al. 2020), evaluate the strong and weak scalability of the algorithms using real COVID-19 data sets. We verify part of the conclusions from the original article and propose our explanation of the differences obtained in our results.
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2022.3206099