The DIAsDEM framework for converting domain-specific texts into XML documents with data mining techniques

Modern organizations are accumulating huge volumes of textual documents. To turn archives into valuable knowledge sources, textual content must become explicit and able to be queried. Semantic tagging with markup languages such as XML satisfies both requirements. We thus introduce the DIAsDEM* frame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Graubitz, H., Spiliopoulou, M., Winkler, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modern organizations are accumulating huge volumes of textual documents. To turn archives into valuable knowledge sources, textual content must become explicit and able to be queried. Semantic tagging with markup languages such as XML satisfies both requirements. We thus introduce the DIAsDEM* framework for extracting semantics from structural text units (e.g., sentences), assigning XML tags to them and deriving a flat XML DTD for the archive. DIAsDEM focuses on archives characterized by a peculiar terminology and by an implicit structure such as court filings and company reports. In the knowledge discovery phase, text units are iteratively clustered by similarity of their content. Each iteration outputs clusters satisfying a set of quality criteria. Text units contained in these clusters are tagged with semiautomatically determined cluster labels and XML tags respectively. Additionally, extracted named entities (e.g., persons) serve as attributes of XML tags. We apply the framework in a case study on the German Commercial Register.
DOI:10.1109/ICDM.2001.989515