An application of zero-inflated Poisson regression for software fault prediction

Poisson regression model is widely used in software quality modeling. When the response variable of a data set includes a large number of zeros, Poisson regression model will underestimate the probability of zeros. A zero-inflated model changes the mean structure of the pure Poisson model. The predi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khoshgoftaar, T.M., Gao, K., Szabo, R.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue
container_start_page 66
container_title
container_volume
creator Khoshgoftaar, T.M.
Gao, K.
Szabo, R.M.
description Poisson regression model is widely used in software quality modeling. When the response variable of a data set includes a large number of zeros, Poisson regression model will underestimate the probability of zeros. A zero-inflated model changes the mean structure of the pure Poisson model. The predictive quality is therefore improved. In this paper, we examine a full-scale industrial software system and develop two models, Poisson regression and zero-inflated Poisson regression. To our knowledge, this is the first study that introduces the zero-inflated Poisson regression model in software reliability. Comparing the predictive qualities of the two competing models, we conclude that for this system, the zero-inflated Poisson regression model is more appropriate in theory and practice.
doi_str_mv 10.1109/ISSRE.2001.989459
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_989459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>989459</ieee_id><sourcerecordid>26860788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-9ff7eb7911dc03b6601ed3ddbbd61c2911493747e89afbf6e5aa79e2e9dbc38b3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMfYK39AXrKydvWZLP5OpZStVCwWD0vyeaNRLabNdki-uvdUucyMPMwh0HolpI5pUQ_rHe719W8JITOtdIV12doUjJWFoJX-hxdEyk0p4wIfYEmlEhajJC6QrOcP8kozpXifIK2iw6bvm9DY4YQOxw9_oUUi9D51gzg8DaGnMciwUeCnI-Mjwnn6IdvkwB7c2gH3CdwoTku3KBLb9oMs3-fovfH1dvyudi8PK2Xi03RMCqHQnsvwUpNqWsIs0IQCo45Z60TtCnHvNJMVhKUNt56AdwYqaEE7WzDlGVTdH_a7VP8OkAe6n3IDbSt6SAecl0KJYhUagTvTmAAgLpPYW_ST306jf0BsgVgYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>26860788</pqid></control><display><type>conference_proceeding</type><title>An application of zero-inflated Poisson regression for software fault prediction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Khoshgoftaar, T.M. ; Gao, K. ; Szabo, R.M.</creator><creatorcontrib>Khoshgoftaar, T.M. ; Gao, K. ; Szabo, R.M.</creatorcontrib><description>Poisson regression model is widely used in software quality modeling. When the response variable of a data set includes a large number of zeros, Poisson regression model will underestimate the probability of zeros. A zero-inflated model changes the mean structure of the pure Poisson model. The predictive quality is therefore improved. In this paper, we examine a full-scale industrial software system and develop two models, Poisson regression and zero-inflated Poisson regression. To our knowledge, this is the first study that introduces the zero-inflated Poisson regression model in software reliability. Comparing the predictive qualities of the two competing models, we conclude that for this system, the zero-inflated Poisson regression model is more appropriate in theory and practice.</description><identifier>ISSN: 1071-9458</identifier><identifier>ISBN: 0769513069</identifier><identifier>ISBN: 9780769513065</identifier><identifier>EISSN: 2332-6549</identifier><identifier>DOI: 10.1109/ISSRE.2001.989459</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Computer science ; Economic forecasting ; Fault diagnosis ; Predictive models ; Software engineering ; Software quality ; Software reliability ; Software systems ; Software testing</subject><ispartof>Proceedings - International Symposium on Software Reliability Engineering, 2001, p.66-73</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-9ff7eb7911dc03b6601ed3ddbbd61c2911493747e89afbf6e5aa79e2e9dbc38b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/989459$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/989459$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khoshgoftaar, T.M.</creatorcontrib><creatorcontrib>Gao, K.</creatorcontrib><creatorcontrib>Szabo, R.M.</creatorcontrib><title>An application of zero-inflated Poisson regression for software fault prediction</title><title>Proceedings - International Symposium on Software Reliability Engineering</title><addtitle>ISSRE</addtitle><description>Poisson regression model is widely used in software quality modeling. When the response variable of a data set includes a large number of zeros, Poisson regression model will underestimate the probability of zeros. A zero-inflated model changes the mean structure of the pure Poisson model. The predictive quality is therefore improved. In this paper, we examine a full-scale industrial software system and develop two models, Poisson regression and zero-inflated Poisson regression. To our knowledge, this is the first study that introduces the zero-inflated Poisson regression model in software reliability. Comparing the predictive qualities of the two competing models, we conclude that for this system, the zero-inflated Poisson regression model is more appropriate in theory and practice.</description><subject>Application software</subject><subject>Computer science</subject><subject>Economic forecasting</subject><subject>Fault diagnosis</subject><subject>Predictive models</subject><subject>Software engineering</subject><subject>Software quality</subject><subject>Software reliability</subject><subject>Software systems</subject><subject>Software testing</subject><issn>1071-9458</issn><issn>2332-6549</issn><isbn>0769513069</isbn><isbn>9780769513065</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE1LAzEYhIMfYK39AXrKydvWZLP5OpZStVCwWD0vyeaNRLabNdki-uvdUucyMPMwh0HolpI5pUQ_rHe719W8JITOtdIV12doUjJWFoJX-hxdEyk0p4wIfYEmlEhajJC6QrOcP8kozpXifIK2iw6bvm9DY4YQOxw9_oUUi9D51gzg8DaGnMciwUeCnI-Mjwnn6IdvkwB7c2gH3CdwoTku3KBLb9oMs3-fovfH1dvyudi8PK2Xi03RMCqHQnsvwUpNqWsIs0IQCo45Z60TtCnHvNJMVhKUNt56AdwYqaEE7WzDlGVTdH_a7VP8OkAe6n3IDbSt6SAecl0KJYhUagTvTmAAgLpPYW_ST306jf0BsgVgYA</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Khoshgoftaar, T.M.</creator><creator>Gao, K.</creator><creator>Szabo, R.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2001</creationdate><title>An application of zero-inflated Poisson regression for software fault prediction</title><author>Khoshgoftaar, T.M. ; Gao, K. ; Szabo, R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-9ff7eb7911dc03b6601ed3ddbbd61c2911493747e89afbf6e5aa79e2e9dbc38b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Application software</topic><topic>Computer science</topic><topic>Economic forecasting</topic><topic>Fault diagnosis</topic><topic>Predictive models</topic><topic>Software engineering</topic><topic>Software quality</topic><topic>Software reliability</topic><topic>Software systems</topic><topic>Software testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Khoshgoftaar, T.M.</creatorcontrib><creatorcontrib>Gao, K.</creatorcontrib><creatorcontrib>Szabo, R.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khoshgoftaar, T.M.</au><au>Gao, K.</au><au>Szabo, R.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An application of zero-inflated Poisson regression for software fault prediction</atitle><btitle>Proceedings - International Symposium on Software Reliability Engineering</btitle><stitle>ISSRE</stitle><date>2001</date><risdate>2001</risdate><spage>66</spage><epage>73</epage><pages>66-73</pages><issn>1071-9458</issn><eissn>2332-6549</eissn><isbn>0769513069</isbn><isbn>9780769513065</isbn><abstract>Poisson regression model is widely used in software quality modeling. When the response variable of a data set includes a large number of zeros, Poisson regression model will underestimate the probability of zeros. A zero-inflated model changes the mean structure of the pure Poisson model. The predictive quality is therefore improved. In this paper, we examine a full-scale industrial software system and develop two models, Poisson regression and zero-inflated Poisson regression. To our knowledge, this is the first study that introduces the zero-inflated Poisson regression model in software reliability. Comparing the predictive qualities of the two competing models, we conclude that for this system, the zero-inflated Poisson regression model is more appropriate in theory and practice.</abstract><pub>IEEE</pub><doi>10.1109/ISSRE.2001.989459</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1071-9458
ispartof Proceedings - International Symposium on Software Reliability Engineering, 2001, p.66-73
issn 1071-9458
2332-6549
language eng
recordid cdi_ieee_primary_989459
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Computer science
Economic forecasting
Fault diagnosis
Predictive models
Software engineering
Software quality
Software reliability
Software systems
Software testing
title An application of zero-inflated Poisson regression for software fault prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A08%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20application%20of%20zero-inflated%20Poisson%20regression%20for%20software%20fault%20prediction&rft.btitle=Proceedings%20-%20International%20Symposium%20on%20Software%20Reliability%20Engineering&rft.au=Khoshgoftaar,%20T.M.&rft.date=2001&rft.spage=66&rft.epage=73&rft.pages=66-73&rft.issn=1071-9458&rft.eissn=2332-6549&rft.isbn=0769513069&rft.isbn_list=9780769513065&rft_id=info:doi/10.1109/ISSRE.2001.989459&rft_dat=%3Cproquest_6IE%3E26860788%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26860788&rft_id=info:pmid/&rft_ieee_id=989459&rfr_iscdi=true