An application of zero-inflated Poisson regression for software fault prediction
Poisson regression model is widely used in software quality modeling. When the response variable of a data set includes a large number of zeros, Poisson regression model will underestimate the probability of zeros. A zero-inflated model changes the mean structure of the pure Poisson model. The predi...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 73 |
---|---|
container_issue | |
container_start_page | 66 |
container_title | |
container_volume | |
creator | Khoshgoftaar, T.M. Gao, K. Szabo, R.M. |
description | Poisson regression model is widely used in software quality modeling. When the response variable of a data set includes a large number of zeros, Poisson regression model will underestimate the probability of zeros. A zero-inflated model changes the mean structure of the pure Poisson model. The predictive quality is therefore improved. In this paper, we examine a full-scale industrial software system and develop two models, Poisson regression and zero-inflated Poisson regression. To our knowledge, this is the first study that introduces the zero-inflated Poisson regression model in software reliability. Comparing the predictive qualities of the two competing models, we conclude that for this system, the zero-inflated Poisson regression model is more appropriate in theory and practice. |
doi_str_mv | 10.1109/ISSRE.2001.989459 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_989459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>989459</ieee_id><sourcerecordid>26860788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-9ff7eb7911dc03b6601ed3ddbbd61c2911493747e89afbf6e5aa79e2e9dbc38b3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMfYK39AXrKydvWZLP5OpZStVCwWD0vyeaNRLabNdki-uvdUucyMPMwh0HolpI5pUQ_rHe719W8JITOtdIV12doUjJWFoJX-hxdEyk0p4wIfYEmlEhajJC6QrOcP8kozpXifIK2iw6bvm9DY4YQOxw9_oUUi9D51gzg8DaGnMciwUeCnI-Mjwnn6IdvkwB7c2gH3CdwoTku3KBLb9oMs3-fovfH1dvyudi8PK2Xi03RMCqHQnsvwUpNqWsIs0IQCo45Z60TtCnHvNJMVhKUNt56AdwYqaEE7WzDlGVTdH_a7VP8OkAe6n3IDbSt6SAecl0KJYhUagTvTmAAgLpPYW_ST306jf0BsgVgYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>26860788</pqid></control><display><type>conference_proceeding</type><title>An application of zero-inflated Poisson regression for software fault prediction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Khoshgoftaar, T.M. ; Gao, K. ; Szabo, R.M.</creator><creatorcontrib>Khoshgoftaar, T.M. ; Gao, K. ; Szabo, R.M.</creatorcontrib><description>Poisson regression model is widely used in software quality modeling. When the response variable of a data set includes a large number of zeros, Poisson regression model will underestimate the probability of zeros. A zero-inflated model changes the mean structure of the pure Poisson model. The predictive quality is therefore improved. In this paper, we examine a full-scale industrial software system and develop two models, Poisson regression and zero-inflated Poisson regression. To our knowledge, this is the first study that introduces the zero-inflated Poisson regression model in software reliability. Comparing the predictive qualities of the two competing models, we conclude that for this system, the zero-inflated Poisson regression model is more appropriate in theory and practice.</description><identifier>ISSN: 1071-9458</identifier><identifier>ISBN: 0769513069</identifier><identifier>ISBN: 9780769513065</identifier><identifier>EISSN: 2332-6549</identifier><identifier>DOI: 10.1109/ISSRE.2001.989459</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Computer science ; Economic forecasting ; Fault diagnosis ; Predictive models ; Software engineering ; Software quality ; Software reliability ; Software systems ; Software testing</subject><ispartof>Proceedings - International Symposium on Software Reliability Engineering, 2001, p.66-73</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-9ff7eb7911dc03b6601ed3ddbbd61c2911493747e89afbf6e5aa79e2e9dbc38b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/989459$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/989459$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khoshgoftaar, T.M.</creatorcontrib><creatorcontrib>Gao, K.</creatorcontrib><creatorcontrib>Szabo, R.M.</creatorcontrib><title>An application of zero-inflated Poisson regression for software fault prediction</title><title>Proceedings - International Symposium on Software Reliability Engineering</title><addtitle>ISSRE</addtitle><description>Poisson regression model is widely used in software quality modeling. When the response variable of a data set includes a large number of zeros, Poisson regression model will underestimate the probability of zeros. A zero-inflated model changes the mean structure of the pure Poisson model. The predictive quality is therefore improved. In this paper, we examine a full-scale industrial software system and develop two models, Poisson regression and zero-inflated Poisson regression. To our knowledge, this is the first study that introduces the zero-inflated Poisson regression model in software reliability. Comparing the predictive qualities of the two competing models, we conclude that for this system, the zero-inflated Poisson regression model is more appropriate in theory and practice.</description><subject>Application software</subject><subject>Computer science</subject><subject>Economic forecasting</subject><subject>Fault diagnosis</subject><subject>Predictive models</subject><subject>Software engineering</subject><subject>Software quality</subject><subject>Software reliability</subject><subject>Software systems</subject><subject>Software testing</subject><issn>1071-9458</issn><issn>2332-6549</issn><isbn>0769513069</isbn><isbn>9780769513065</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE1LAzEYhIMfYK39AXrKydvWZLP5OpZStVCwWD0vyeaNRLabNdki-uvdUucyMPMwh0HolpI5pUQ_rHe719W8JITOtdIV12doUjJWFoJX-hxdEyk0p4wIfYEmlEhajJC6QrOcP8kozpXifIK2iw6bvm9DY4YQOxw9_oUUi9D51gzg8DaGnMciwUeCnI-Mjwnn6IdvkwB7c2gH3CdwoTku3KBLb9oMs3-fovfH1dvyudi8PK2Xi03RMCqHQnsvwUpNqWsIs0IQCo45Z60TtCnHvNJMVhKUNt56AdwYqaEE7WzDlGVTdH_a7VP8OkAe6n3IDbSt6SAecl0KJYhUagTvTmAAgLpPYW_ST306jf0BsgVgYA</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Khoshgoftaar, T.M.</creator><creator>Gao, K.</creator><creator>Szabo, R.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2001</creationdate><title>An application of zero-inflated Poisson regression for software fault prediction</title><author>Khoshgoftaar, T.M. ; Gao, K. ; Szabo, R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-9ff7eb7911dc03b6601ed3ddbbd61c2911493747e89afbf6e5aa79e2e9dbc38b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Application software</topic><topic>Computer science</topic><topic>Economic forecasting</topic><topic>Fault diagnosis</topic><topic>Predictive models</topic><topic>Software engineering</topic><topic>Software quality</topic><topic>Software reliability</topic><topic>Software systems</topic><topic>Software testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Khoshgoftaar, T.M.</creatorcontrib><creatorcontrib>Gao, K.</creatorcontrib><creatorcontrib>Szabo, R.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khoshgoftaar, T.M.</au><au>Gao, K.</au><au>Szabo, R.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An application of zero-inflated Poisson regression for software fault prediction</atitle><btitle>Proceedings - International Symposium on Software Reliability Engineering</btitle><stitle>ISSRE</stitle><date>2001</date><risdate>2001</risdate><spage>66</spage><epage>73</epage><pages>66-73</pages><issn>1071-9458</issn><eissn>2332-6549</eissn><isbn>0769513069</isbn><isbn>9780769513065</isbn><abstract>Poisson regression model is widely used in software quality modeling. When the response variable of a data set includes a large number of zeros, Poisson regression model will underestimate the probability of zeros. A zero-inflated model changes the mean structure of the pure Poisson model. The predictive quality is therefore improved. In this paper, we examine a full-scale industrial software system and develop two models, Poisson regression and zero-inflated Poisson regression. To our knowledge, this is the first study that introduces the zero-inflated Poisson regression model in software reliability. Comparing the predictive qualities of the two competing models, we conclude that for this system, the zero-inflated Poisson regression model is more appropriate in theory and practice.</abstract><pub>IEEE</pub><doi>10.1109/ISSRE.2001.989459</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1071-9458 |
ispartof | Proceedings - International Symposium on Software Reliability Engineering, 2001, p.66-73 |
issn | 1071-9458 2332-6549 |
language | eng |
recordid | cdi_ieee_primary_989459 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software Computer science Economic forecasting Fault diagnosis Predictive models Software engineering Software quality Software reliability Software systems Software testing |
title | An application of zero-inflated Poisson regression for software fault prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A08%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20application%20of%20zero-inflated%20Poisson%20regression%20for%20software%20fault%20prediction&rft.btitle=Proceedings%20-%20International%20Symposium%20on%20Software%20Reliability%20Engineering&rft.au=Khoshgoftaar,%20T.M.&rft.date=2001&rft.spage=66&rft.epage=73&rft.pages=66-73&rft.issn=1071-9458&rft.eissn=2332-6549&rft.isbn=0769513069&rft.isbn_list=9780769513065&rft_id=info:doi/10.1109/ISSRE.2001.989459&rft_dat=%3Cproquest_6IE%3E26860788%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26860788&rft_id=info:pmid/&rft_ieee_id=989459&rfr_iscdi=true |