An application of zero-inflated Poisson regression for software fault prediction

Poisson regression model is widely used in software quality modeling. When the response variable of a data set includes a large number of zeros, Poisson regression model will underestimate the probability of zeros. A zero-inflated model changes the mean structure of the pure Poisson model. The predi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khoshgoftaar, T.M., Gao, K., Szabo, R.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poisson regression model is widely used in software quality modeling. When the response variable of a data set includes a large number of zeros, Poisson regression model will underestimate the probability of zeros. A zero-inflated model changes the mean structure of the pure Poisson model. The predictive quality is therefore improved. In this paper, we examine a full-scale industrial software system and develop two models, Poisson regression and zero-inflated Poisson regression. To our knowledge, this is the first study that introduces the zero-inflated Poisson regression model in software reliability. Comparing the predictive qualities of the two competing models, we conclude that for this system, the zero-inflated Poisson regression model is more appropriate in theory and practice.
ISSN:1071-9458
2332-6549
DOI:10.1109/ISSRE.2001.989459