Provably-Stable Overload Ride-Through Control for Grid-Forming Inverters Using System-Wide Lyapunov Function Analysis

A key challenge associated with a grid-forming (GFM) inverter based resource (IBR) is its behavior during severe grid disturbances: since a GFM inverter regulates voltage in the fast timescale instead of current or power, it may experience a transient overload of current, power and/or energy during...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on energy conversion 2022-12, Vol.37 (4), p.2761-2776
Hauptverfasser: Hart, Philip J., Gong, Maozhong, Liu, Hanchao, Chen, Zhe, Zhang, Yichao, Wang, Yukai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2776
container_issue 4
container_start_page 2761
container_title IEEE transactions on energy conversion
container_volume 37
creator Hart, Philip J.
Gong, Maozhong
Liu, Hanchao
Chen, Zhe
Zhang, Yichao
Wang, Yukai
description A key challenge associated with a grid-forming (GFM) inverter based resource (IBR) is its behavior during severe grid disturbances: since a GFM inverter regulates voltage in the fast timescale instead of current or power, it may experience a transient overload of current, power and/or energy during a severe grid disturbance. While many promising control strategies for overload ride-through have been proposed over the past two decades, transient stability of the system during and after the transition to an overload ride-through control mode remains difficult to guarantee. In this article, a novel overload ride-through control strategy is proposed for a system of grid-forming inverters that takes both self-protection and system-wide transient stability into account. A proposed system-level supervisory control uses slow communication to pre-emptively assign a set of local ride-through control parameters to individual GFM IBR, including a current-limiting virtual reactance, that guarantees that synchronism is still preserved for any set of anticipated grid disturbances. At the core of the supervisory control lies a Lyapunov-function-based routine capable of establishing a strong, albeit conservative, transient stability guarantee for the system. The proposed overload ride-through control strategy is validated via numerical integration of a reduced-order model, as well as through detailed electromagnetic transient (EMT) simulation.
doi_str_mv 10.1109/TEC.2022.3205630
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9887808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9887808</ieee_id><sourcerecordid>2747609977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-2394d547e37b8abc1c4c4b60e52d5e88b373c7b19aaa110304f82e29423443513</originalsourceid><addsrcrecordid>eNo9kU1rGzEQhkVpoW7ae6EX0Z7l6HMlHYOJ04AhoXHoUWi1cqywllxJa9h_HxmHzmUYeN5hmAeA7wQvCcH6enu7WlJM6ZJRLDqGP4AFEUIhjIX-CBZYKYGU7vRn8KWUV4wJF5QswPSY08n244yeamsePpx8HpMd4J8weLTd5zS97OEqxZrTCHcpw7scBrRO-RDiC7yPja8-F_hczvPTXKo_oL8tDDezPU4xneB6iq6GFOFNtONcQvkKPu3sWPy3934Fnte329VvtHm4u1_dbJBjHa6IMs0HwaVnsle2d8Rxx_sOe0EH4ZXqmWRO9kRba9sTGOY7RT3VnDLOmSDsCvy87E2lBlNcqN7tXYrRu2poK6Fwg35doGNO_yZfqnlNU26XFkMllx3WWspG4Qvlciol-5055nCweTYEm7MB0wyYswHzbqBFflwiwXv_H9dKSYUVewMw1YGK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747609977</pqid></control><display><type>article</type><title>Provably-Stable Overload Ride-Through Control for Grid-Forming Inverters Using System-Wide Lyapunov Function Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Hart, Philip J. ; Gong, Maozhong ; Liu, Hanchao ; Chen, Zhe ; Zhang, Yichao ; Wang, Yukai</creator><creatorcontrib>Hart, Philip J. ; Gong, Maozhong ; Liu, Hanchao ; Chen, Zhe ; Zhang, Yichao ; Wang, Yukai ; GE Research, Niskayuna, NY (United States)</creatorcontrib><description>A key challenge associated with a grid-forming (GFM) inverter based resource (IBR) is its behavior during severe grid disturbances: since a GFM inverter regulates voltage in the fast timescale instead of current or power, it may experience a transient overload of current, power and/or energy during a severe grid disturbance. While many promising control strategies for overload ride-through have been proposed over the past two decades, transient stability of the system during and after the transition to an overload ride-through control mode remains difficult to guarantee. In this article, a novel overload ride-through control strategy is proposed for a system of grid-forming inverters that takes both self-protection and system-wide transient stability into account. A proposed system-level supervisory control uses slow communication to pre-emptively assign a set of local ride-through control parameters to individual GFM IBR, including a current-limiting virtual reactance, that guarantees that synchronism is still preserved for any set of anticipated grid disturbances. At the core of the supervisory control lies a Lyapunov-function-based routine capable of establishing a strong, albeit conservative, transient stability guarantee for the system. The proposed overload ride-through control strategy is validated via numerical integration of a reduced-order model, as well as through detailed electromagnetic transient (EMT) simulation.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2022.3205630</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>30 DIRECT ENERGY CONVERSION ; Control systems ; Disturbances ; Fault ride through ; Function analysis ; grid disturbance ; grid-forming ; Impedance ; Inverters ; Liapunov functions ; Limiting ; Lyapunov function ; Numerical integration ; overcurrent limiting ; overload ride through ; Overloading ; power limiting ; Power system stability ; Reactance ; Reduced order models ; Stability criteria ; Supervisory control ; Synchronism ; Transient analysis ; Transient stability ; virtual impedance ; Voltage control</subject><ispartof>IEEE transactions on energy conversion, 2022-12, Vol.37 (4), p.2761-2776</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-2394d547e37b8abc1c4c4b60e52d5e88b373c7b19aaa110304f82e29423443513</citedby><cites>FETCH-LOGICAL-c360t-2394d547e37b8abc1c4c4b60e52d5e88b373c7b19aaa110304f82e29423443513</cites><orcidid>0000-0002-4762-9530 ; 0000-0001-6246-7421 ; 0000000162467421 ; 0000000247629530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9887808$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9887808$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/2222580$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hart, Philip J.</creatorcontrib><creatorcontrib>Gong, Maozhong</creatorcontrib><creatorcontrib>Liu, Hanchao</creatorcontrib><creatorcontrib>Chen, Zhe</creatorcontrib><creatorcontrib>Zhang, Yichao</creatorcontrib><creatorcontrib>Wang, Yukai</creatorcontrib><creatorcontrib>GE Research, Niskayuna, NY (United States)</creatorcontrib><title>Provably-Stable Overload Ride-Through Control for Grid-Forming Inverters Using System-Wide Lyapunov Function Analysis</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>A key challenge associated with a grid-forming (GFM) inverter based resource (IBR) is its behavior during severe grid disturbances: since a GFM inverter regulates voltage in the fast timescale instead of current or power, it may experience a transient overload of current, power and/or energy during a severe grid disturbance. While many promising control strategies for overload ride-through have been proposed over the past two decades, transient stability of the system during and after the transition to an overload ride-through control mode remains difficult to guarantee. In this article, a novel overload ride-through control strategy is proposed for a system of grid-forming inverters that takes both self-protection and system-wide transient stability into account. A proposed system-level supervisory control uses slow communication to pre-emptively assign a set of local ride-through control parameters to individual GFM IBR, including a current-limiting virtual reactance, that guarantees that synchronism is still preserved for any set of anticipated grid disturbances. At the core of the supervisory control lies a Lyapunov-function-based routine capable of establishing a strong, albeit conservative, transient stability guarantee for the system. The proposed overload ride-through control strategy is validated via numerical integration of a reduced-order model, as well as through detailed electromagnetic transient (EMT) simulation.</description><subject>30 DIRECT ENERGY CONVERSION</subject><subject>Control systems</subject><subject>Disturbances</subject><subject>Fault ride through</subject><subject>Function analysis</subject><subject>grid disturbance</subject><subject>grid-forming</subject><subject>Impedance</subject><subject>Inverters</subject><subject>Liapunov functions</subject><subject>Limiting</subject><subject>Lyapunov function</subject><subject>Numerical integration</subject><subject>overcurrent limiting</subject><subject>overload ride through</subject><subject>Overloading</subject><subject>power limiting</subject><subject>Power system stability</subject><subject>Reactance</subject><subject>Reduced order models</subject><subject>Stability criteria</subject><subject>Supervisory control</subject><subject>Synchronism</subject><subject>Transient analysis</subject><subject>Transient stability</subject><subject>virtual impedance</subject><subject>Voltage control</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kU1rGzEQhkVpoW7ae6EX0Z7l6HMlHYOJ04AhoXHoUWi1cqywllxJa9h_HxmHzmUYeN5hmAeA7wQvCcH6enu7WlJM6ZJRLDqGP4AFEUIhjIX-CBZYKYGU7vRn8KWUV4wJF5QswPSY08n244yeamsePpx8HpMd4J8weLTd5zS97OEqxZrTCHcpw7scBrRO-RDiC7yPja8-F_hczvPTXKo_oL8tDDezPU4xneB6iq6GFOFNtONcQvkKPu3sWPy3934Fnte329VvtHm4u1_dbJBjHa6IMs0HwaVnsle2d8Rxx_sOe0EH4ZXqmWRO9kRba9sTGOY7RT3VnDLOmSDsCvy87E2lBlNcqN7tXYrRu2poK6Fwg35doGNO_yZfqnlNU26XFkMllx3WWspG4Qvlciol-5055nCweTYEm7MB0wyYswHzbqBFflwiwXv_H9dKSYUVewMw1YGK</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Hart, Philip J.</creator><creator>Gong, Maozhong</creator><creator>Liu, Hanchao</creator><creator>Chen, Zhe</creator><creator>Zhang, Yichao</creator><creator>Wang, Yukai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4762-9530</orcidid><orcidid>https://orcid.org/0000-0001-6246-7421</orcidid><orcidid>https://orcid.org/0000000162467421</orcidid><orcidid>https://orcid.org/0000000247629530</orcidid></search><sort><creationdate>20221201</creationdate><title>Provably-Stable Overload Ride-Through Control for Grid-Forming Inverters Using System-Wide Lyapunov Function Analysis</title><author>Hart, Philip J. ; Gong, Maozhong ; Liu, Hanchao ; Chen, Zhe ; Zhang, Yichao ; Wang, Yukai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-2394d547e37b8abc1c4c4b60e52d5e88b373c7b19aaa110304f82e29423443513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>30 DIRECT ENERGY CONVERSION</topic><topic>Control systems</topic><topic>Disturbances</topic><topic>Fault ride through</topic><topic>Function analysis</topic><topic>grid disturbance</topic><topic>grid-forming</topic><topic>Impedance</topic><topic>Inverters</topic><topic>Liapunov functions</topic><topic>Limiting</topic><topic>Lyapunov function</topic><topic>Numerical integration</topic><topic>overcurrent limiting</topic><topic>overload ride through</topic><topic>Overloading</topic><topic>power limiting</topic><topic>Power system stability</topic><topic>Reactance</topic><topic>Reduced order models</topic><topic>Stability criteria</topic><topic>Supervisory control</topic><topic>Synchronism</topic><topic>Transient analysis</topic><topic>Transient stability</topic><topic>virtual impedance</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hart, Philip J.</creatorcontrib><creatorcontrib>Gong, Maozhong</creatorcontrib><creatorcontrib>Liu, Hanchao</creatorcontrib><creatorcontrib>Chen, Zhe</creatorcontrib><creatorcontrib>Zhang, Yichao</creatorcontrib><creatorcontrib>Wang, Yukai</creatorcontrib><creatorcontrib>GE Research, Niskayuna, NY (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hart, Philip J.</au><au>Gong, Maozhong</au><au>Liu, Hanchao</au><au>Chen, Zhe</au><au>Zhang, Yichao</au><au>Wang, Yukai</au><aucorp>GE Research, Niskayuna, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Provably-Stable Overload Ride-Through Control for Grid-Forming Inverters Using System-Wide Lyapunov Function Analysis</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>37</volume><issue>4</issue><spage>2761</spage><epage>2776</epage><pages>2761-2776</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>A key challenge associated with a grid-forming (GFM) inverter based resource (IBR) is its behavior during severe grid disturbances: since a GFM inverter regulates voltage in the fast timescale instead of current or power, it may experience a transient overload of current, power and/or energy during a severe grid disturbance. While many promising control strategies for overload ride-through have been proposed over the past two decades, transient stability of the system during and after the transition to an overload ride-through control mode remains difficult to guarantee. In this article, a novel overload ride-through control strategy is proposed for a system of grid-forming inverters that takes both self-protection and system-wide transient stability into account. A proposed system-level supervisory control uses slow communication to pre-emptively assign a set of local ride-through control parameters to individual GFM IBR, including a current-limiting virtual reactance, that guarantees that synchronism is still preserved for any set of anticipated grid disturbances. At the core of the supervisory control lies a Lyapunov-function-based routine capable of establishing a strong, albeit conservative, transient stability guarantee for the system. The proposed overload ride-through control strategy is validated via numerical integration of a reduced-order model, as well as through detailed electromagnetic transient (EMT) simulation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2022.3205630</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4762-9530</orcidid><orcidid>https://orcid.org/0000-0001-6246-7421</orcidid><orcidid>https://orcid.org/0000000162467421</orcidid><orcidid>https://orcid.org/0000000247629530</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8969
ispartof IEEE transactions on energy conversion, 2022-12, Vol.37 (4), p.2761-2776
issn 0885-8969
1558-0059
language eng
recordid cdi_ieee_primary_9887808
source IEEE Electronic Library (IEL)
subjects 30 DIRECT ENERGY CONVERSION
Control systems
Disturbances
Fault ride through
Function analysis
grid disturbance
grid-forming
Impedance
Inverters
Liapunov functions
Limiting
Lyapunov function
Numerical integration
overcurrent limiting
overload ride through
Overloading
power limiting
Power system stability
Reactance
Reduced order models
Stability criteria
Supervisory control
Synchronism
Transient analysis
Transient stability
virtual impedance
Voltage control
title Provably-Stable Overload Ride-Through Control for Grid-Forming Inverters Using System-Wide Lyapunov Function Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A53%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Provably-Stable%20Overload%20Ride-Through%20Control%20for%20Grid-Forming%20Inverters%20Using%20System-Wide%20Lyapunov%20Function%20Analysis&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Hart,%20Philip%20J.&rft.aucorp=GE%20Research,%20Niskayuna,%20NY%20(United%20States)&rft.date=2022-12-01&rft.volume=37&rft.issue=4&rft.spage=2761&rft.epage=2776&rft.pages=2761-2776&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2022.3205630&rft_dat=%3Cproquest_RIE%3E2747609977%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747609977&rft_id=info:pmid/&rft_ieee_id=9887808&rfr_iscdi=true