Fast Open Circuit Voltage Estimation of Lithium-Ion Batteries Using a Relaxation Model and Genetic Algorithm

Battery Open Circuit Voltage (OCV) is of fundamental characteristic for enabling battery modeling and states estimation. However, the traditional OCV measurement method takes a very long time to make the battery reaches its equilibrium, which is rather inconvenient and cannot be performed online for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.1-1
Hauptverfasser: Qian, Yimin, Zheng, Jian, Ding, Kai, Zhang, Hui, Chen, Qiao, Wang, Bei, Wang, Yi, Huang, Zengrui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 10
creator Qian, Yimin
Zheng, Jian
Ding, Kai
Zhang, Hui
Chen, Qiao
Wang, Bei
Wang, Yi
Huang, Zengrui
description Battery Open Circuit Voltage (OCV) is of fundamental characteristic for enabling battery modeling and states estimation. However, the traditional OCV measurement method takes a very long time to make the battery reaches its equilibrium, which is rather inconvenient and cannot be performed online for battery energy storage application. Motived by this, this paper proposes an effective method for fast OCV estimation in the relaxation process. In this work, a novel relaxation model is designed for capturing the voltage response of a battery during relaxation time and the Genetic Algorithm (GA) is further applied for optimizing the model parameters and acquiring accurate OCV estimation results. Experimental results confirm the validity of the proposed method under different State of Charges (SOCs), current rates, ambient temperatures, and aging conditions. The results suggest that the proposed method can accurately and quickly estimate battery OCV, which only takes 10 minutes of measurement data (more than 2 hours for the traditional method) and the maximum estimation error is limited to merely 1.8 mV.
doi_str_mv 10.1109/ACCESS.2022.3203178
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9870815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9870815</ieee_id><doaj_id>oai_doaj_org_article_cb4afed586904a4fbfc760c0da5cc760</doaj_id><sourcerecordid>2716347053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-cd6d4549dd8a6853718c2fa1e8d5cf30a3f6d38c687372426448b5fe5d5fa9a13</originalsourceid><addsrcrecordid>eNpNkVtrGzEQhZfQQkOaX5AXQZ_X1X21j-7ipAaXQNL0VYx1cWTWK0eSIf33lbshRC8aDeecGfE1zQ3BC0Jw_305DKvHxwXFlC4YxYx06qK5pET2LRNMfvpQf2muc97jelRtie6yGW8hF3R_dBMaQjKnUNCfOBbYObTKJRyghDih6NEmlOdwOrTr-vwBpbgUXEZPOUw7BOjBjfA6a39F60YEk0V3bnIlGLQcdzFV--Fr89nDmN31233VPN2ufg8_28393XpYblrDsSqtsdJywXtrFUglWEeUoR6IU1YYzzAwLy1TRqqOdZRTybnaCu-EFR56IOyqWc-5NsJeH1P9RvqrIwT9vxHTTkOqm41Omy0H76xQssccuN9600lssAVhzlXN-jZnHVN8Oblc9D6e0lTX17QjkvEOC1ZVbFaZFHNOzr9PJVifKemZkj5T0m-UqutmdgXn3LujV13FI9g_PryOMA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716347053</pqid></control><display><type>article</type><title>Fast Open Circuit Voltage Estimation of Lithium-Ion Batteries Using a Relaxation Model and Genetic Algorithm</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Qian, Yimin ; Zheng, Jian ; Ding, Kai ; Zhang, Hui ; Chen, Qiao ; Wang, Bei ; Wang, Yi ; Huang, Zengrui</creator><creatorcontrib>Qian, Yimin ; Zheng, Jian ; Ding, Kai ; Zhang, Hui ; Chen, Qiao ; Wang, Bei ; Wang, Yi ; Huang, Zengrui</creatorcontrib><description>Battery Open Circuit Voltage (OCV) is of fundamental characteristic for enabling battery modeling and states estimation. However, the traditional OCV measurement method takes a very long time to make the battery reaches its equilibrium, which is rather inconvenient and cannot be performed online for battery energy storage application. Motived by this, this paper proposes an effective method for fast OCV estimation in the relaxation process. In this work, a novel relaxation model is designed for capturing the voltage response of a battery during relaxation time and the Genetic Algorithm (GA) is further applied for optimizing the model parameters and acquiring accurate OCV estimation results. Experimental results confirm the validity of the proposed method under different State of Charges (SOCs), current rates, ambient temperatures, and aging conditions. The results suggest that the proposed method can accurately and quickly estimate battery OCV, which only takes 10 minutes of measurement data (more than 2 hours for the traditional method) and the maximum estimation error is limited to merely 1.8 mV.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3203178</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Batteries ; Battery charge measurement ; Energy storage ; Estimation ; Genetic algorithms ; Integrated circuit modeling ; Lithium-ion batteries ; Lithium-ion battery ; Measurement methods ; Open circuit voltage ; Rechargeable batteries ; relaxation model ; Relaxation time ; State of charge ; Temperature measurement ; Voltage control ; Voltage measurement</subject><ispartof>IEEE access, 2022, Vol.10, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-cd6d4549dd8a6853718c2fa1e8d5cf30a3f6d38c687372426448b5fe5d5fa9a13</citedby><cites>FETCH-LOGICAL-c408t-cd6d4549dd8a6853718c2fa1e8d5cf30a3f6d38c687372426448b5fe5d5fa9a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9870815$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,4023,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Qian, Yimin</creatorcontrib><creatorcontrib>Zheng, Jian</creatorcontrib><creatorcontrib>Ding, Kai</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Chen, Qiao</creatorcontrib><creatorcontrib>Wang, Bei</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Huang, Zengrui</creatorcontrib><title>Fast Open Circuit Voltage Estimation of Lithium-Ion Batteries Using a Relaxation Model and Genetic Algorithm</title><title>IEEE access</title><addtitle>Access</addtitle><description>Battery Open Circuit Voltage (OCV) is of fundamental characteristic for enabling battery modeling and states estimation. However, the traditional OCV measurement method takes a very long time to make the battery reaches its equilibrium, which is rather inconvenient and cannot be performed online for battery energy storage application. Motived by this, this paper proposes an effective method for fast OCV estimation in the relaxation process. In this work, a novel relaxation model is designed for capturing the voltage response of a battery during relaxation time and the Genetic Algorithm (GA) is further applied for optimizing the model parameters and acquiring accurate OCV estimation results. Experimental results confirm the validity of the proposed method under different State of Charges (SOCs), current rates, ambient temperatures, and aging conditions. The results suggest that the proposed method can accurately and quickly estimate battery OCV, which only takes 10 minutes of measurement data (more than 2 hours for the traditional method) and the maximum estimation error is limited to merely 1.8 mV.</description><subject>Batteries</subject><subject>Battery charge measurement</subject><subject>Energy storage</subject><subject>Estimation</subject><subject>Genetic algorithms</subject><subject>Integrated circuit modeling</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Measurement methods</subject><subject>Open circuit voltage</subject><subject>Rechargeable batteries</subject><subject>relaxation model</subject><subject>Relaxation time</subject><subject>State of charge</subject><subject>Temperature measurement</subject><subject>Voltage control</subject><subject>Voltage measurement</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtrGzEQhZfQQkOaX5AXQZ_X1X21j-7ipAaXQNL0VYx1cWTWK0eSIf33lbshRC8aDeecGfE1zQ3BC0Jw_305DKvHxwXFlC4YxYx06qK5pET2LRNMfvpQf2muc97jelRtie6yGW8hF3R_dBMaQjKnUNCfOBbYObTKJRyghDih6NEmlOdwOrTr-vwBpbgUXEZPOUw7BOjBjfA6a39F60YEk0V3bnIlGLQcdzFV--Fr89nDmN31233VPN2ufg8_28393XpYblrDsSqtsdJywXtrFUglWEeUoR6IU1YYzzAwLy1TRqqOdZRTybnaCu-EFR56IOyqWc-5NsJeH1P9RvqrIwT9vxHTTkOqm41Omy0H76xQssccuN9600lssAVhzlXN-jZnHVN8Oblc9D6e0lTX17QjkvEOC1ZVbFaZFHNOzr9PJVifKemZkj5T0m-UqutmdgXn3LujV13FI9g_PryOMA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Qian, Yimin</creator><creator>Zheng, Jian</creator><creator>Ding, Kai</creator><creator>Zhang, Hui</creator><creator>Chen, Qiao</creator><creator>Wang, Bei</creator><creator>Wang, Yi</creator><creator>Huang, Zengrui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope></search><sort><creationdate>2022</creationdate><title>Fast Open Circuit Voltage Estimation of Lithium-Ion Batteries Using a Relaxation Model and Genetic Algorithm</title><author>Qian, Yimin ; Zheng, Jian ; Ding, Kai ; Zhang, Hui ; Chen, Qiao ; Wang, Bei ; Wang, Yi ; Huang, Zengrui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-cd6d4549dd8a6853718c2fa1e8d5cf30a3f6d38c687372426448b5fe5d5fa9a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Battery charge measurement</topic><topic>Energy storage</topic><topic>Estimation</topic><topic>Genetic algorithms</topic><topic>Integrated circuit modeling</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Measurement methods</topic><topic>Open circuit voltage</topic><topic>Rechargeable batteries</topic><topic>relaxation model</topic><topic>Relaxation time</topic><topic>State of charge</topic><topic>Temperature measurement</topic><topic>Voltage control</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Yimin</creatorcontrib><creatorcontrib>Zheng, Jian</creatorcontrib><creatorcontrib>Ding, Kai</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Chen, Qiao</creatorcontrib><creatorcontrib>Wang, Bei</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Huang, Zengrui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Yimin</au><au>Zheng, Jian</au><au>Ding, Kai</au><au>Zhang, Hui</au><au>Chen, Qiao</au><au>Wang, Bei</au><au>Wang, Yi</au><au>Huang, Zengrui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Open Circuit Voltage Estimation of Lithium-Ion Batteries Using a Relaxation Model and Genetic Algorithm</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Battery Open Circuit Voltage (OCV) is of fundamental characteristic for enabling battery modeling and states estimation. However, the traditional OCV measurement method takes a very long time to make the battery reaches its equilibrium, which is rather inconvenient and cannot be performed online for battery energy storage application. Motived by this, this paper proposes an effective method for fast OCV estimation in the relaxation process. In this work, a novel relaxation model is designed for capturing the voltage response of a battery during relaxation time and the Genetic Algorithm (GA) is further applied for optimizing the model parameters and acquiring accurate OCV estimation results. Experimental results confirm the validity of the proposed method under different State of Charges (SOCs), current rates, ambient temperatures, and aging conditions. The results suggest that the proposed method can accurately and quickly estimate battery OCV, which only takes 10 minutes of measurement data (more than 2 hours for the traditional method) and the maximum estimation error is limited to merely 1.8 mV.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3203178</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9870815
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Batteries
Battery charge measurement
Energy storage
Estimation
Genetic algorithms
Integrated circuit modeling
Lithium-ion batteries
Lithium-ion battery
Measurement methods
Open circuit voltage
Rechargeable batteries
relaxation model
Relaxation time
State of charge
Temperature measurement
Voltage control
Voltage measurement
title Fast Open Circuit Voltage Estimation of Lithium-Ion Batteries Using a Relaxation Model and Genetic Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A48%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Open%20Circuit%20Voltage%20Estimation%20of%20Lithium-Ion%20Batteries%20Using%20a%20Relaxation%20Model%20and%20Genetic%20Algorithm&rft.jtitle=IEEE%20access&rft.au=Qian,%20Yimin&rft.date=2022&rft.volume=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3203178&rft_dat=%3Cproquest_ieee_%3E2716347053%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716347053&rft_id=info:pmid/&rft_ieee_id=9870815&rft_doaj_id=oai_doaj_org_article_cb4afed586904a4fbfc760c0da5cc760&rfr_iscdi=true