Fast Open Circuit Voltage Estimation of Lithium-Ion Batteries Using a Relaxation Model and Genetic Algorithm

Battery Open Circuit Voltage (OCV) is of fundamental characteristic for enabling battery modeling and states estimation. However, the traditional OCV measurement method takes a very long time to make the battery reaches its equilibrium, which is rather inconvenient and cannot be performed online for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.1-1
Hauptverfasser: Qian, Yimin, Zheng, Jian, Ding, Kai, Zhang, Hui, Chen, Qiao, Wang, Bei, Wang, Yi, Huang, Zengrui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Battery Open Circuit Voltage (OCV) is of fundamental characteristic for enabling battery modeling and states estimation. However, the traditional OCV measurement method takes a very long time to make the battery reaches its equilibrium, which is rather inconvenient and cannot be performed online for battery energy storage application. Motived by this, this paper proposes an effective method for fast OCV estimation in the relaxation process. In this work, a novel relaxation model is designed for capturing the voltage response of a battery during relaxation time and the Genetic Algorithm (GA) is further applied for optimizing the model parameters and acquiring accurate OCV estimation results. Experimental results confirm the validity of the proposed method under different State of Charges (SOCs), current rates, ambient temperatures, and aging conditions. The results suggest that the proposed method can accurately and quickly estimate battery OCV, which only takes 10 minutes of measurement data (more than 2 hours for the traditional method) and the maximum estimation error is limited to merely 1.8 mV.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3203178