Scalable Learned Geometric Feasibility for Cooperative Grasp and Motion Planning

This letter proposes a novel learned feasibility estimator that considers multi-modal grasp poses for grasp and motion planning. Grasp poses inherently have multi-modal structures, that is, continuous and discrete parameters. Mixed-integer programming (MIP) is one method that solves these multi-moda...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2022-10, Vol.7 (4), p.11545-11552
Hauptverfasser: Park, Suhan, Kim, Hyoung Cheol, Baek, Jiyeong, Park, Jaeheung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11552
container_issue 4
container_start_page 11545
container_title IEEE robotics and automation letters
container_volume 7
creator Park, Suhan
Kim, Hyoung Cheol
Baek, Jiyeong
Park, Jaeheung
description This letter proposes a novel learned feasibility estimator that considers multi-modal grasp poses for grasp and motion planning. Grasp poses inherently have multi-modal structures, that is, continuous and discrete parameters. Mixed-integer programming (MIP) is one method that solves these multi-modal problems. However, searching for all the discrete parameters costs considerable time. Therefore, by learning the feasibility of each mode from the geometric variables, the problem can be solved efficiently within a given time limit. The feasibility of grasp poses is related to the pose of the object and nearby obstacles. Utilizing this information, we introduce learned geometric feasibility (LGF), which prioritizes the integer search of MIP. LGF is scalable to multiple robots and environments because it learns the feasibility using object-oriented information. It has been demonstrated to improve the number of solved MIP problems within the time limit and to be applicable to various environmental settings.
doi_str_mv 10.1109/LRA.2022.3202633
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9869726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9869726</ieee_id><sourcerecordid>2711052060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-2155d03f2009270cf1c15f4da9b1611755f665011ee9cce3469b6365337f2c6e3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGrvgpeA5635aBJzLMW2worFj3PIZieSst2syVbov3dLi3iZGZjnnYEHoVtKppQS_VC-zaeMMDblQ5WcX6AR40oVXEl5-W--RpOct4QQKpjiWozQ5t3ZxlYN4BJsaqHGK4g76FNweAk2hyo0oT9gHxNexNhBsn34AbxKNnfYtjV-iX2ILd40tm1D-3WDrrxtMkzOfYw-l08fi3VRvq6eF_OycIzRvmBUiJpwzwjRTBHnqaPCz2qrKyopVUJ4KQWhFEA7B3wmdSW5FJwrz5wEPkb3p7tdit97yL3Zxn1qh5eGqUGKYESSgSInyqWYcwJvuhR2Nh0MJeaozgzqzFGdOasbInenSACAP1w_Sq2G_S9FuGgo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711052060</pqid></control><display><type>article</type><title>Scalable Learned Geometric Feasibility for Cooperative Grasp and Motion Planning</title><source>IEEE Electronic Library (IEL)</source><creator>Park, Suhan ; Kim, Hyoung Cheol ; Baek, Jiyeong ; Park, Jaeheung</creator><creatorcontrib>Park, Suhan ; Kim, Hyoung Cheol ; Baek, Jiyeong ; Park, Jaeheung</creatorcontrib><description>This letter proposes a novel learned feasibility estimator that considers multi-modal grasp poses for grasp and motion planning. Grasp poses inherently have multi-modal structures, that is, continuous and discrete parameters. Mixed-integer programming (MIP) is one method that solves these multi-modal problems. However, searching for all the discrete parameters costs considerable time. Therefore, by learning the feasibility of each mode from the geometric variables, the problem can be solved efficiently within a given time limit. The feasibility of grasp poses is related to the pose of the object and nearby obstacles. Utilizing this information, we introduce learned geometric feasibility (LGF), which prioritizes the integer search of MIP. LGF is scalable to multiple robots and environments because it learns the feasibility using object-oriented information. It has been demonstrated to improve the number of solved MIP problems within the time limit and to be applicable to various environmental settings.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2022.3202633</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Costs ; Deep learning in grasping and manipulation ; Feasibility ; Grasping ; Grippers ; Integer programming ; Linear programming ; manipulation planning ; Mixed integer ; Motion planning ; Multiple robots ; Object oriented modeling ; Parameters ; Planning ; Robots ; Task analysis</subject><ispartof>IEEE robotics and automation letters, 2022-10, Vol.7 (4), p.11545-11552</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-2155d03f2009270cf1c15f4da9b1611755f665011ee9cce3469b6365337f2c6e3</citedby><cites>FETCH-LOGICAL-c221t-2155d03f2009270cf1c15f4da9b1611755f665011ee9cce3469b6365337f2c6e3</cites><orcidid>0000-0002-9338-5813 ; 0000-0002-5062-8264 ; 0000-0001-6094-0908 ; 0000-0002-9609-4616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9869726$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9869726$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Park, Suhan</creatorcontrib><creatorcontrib>Kim, Hyoung Cheol</creatorcontrib><creatorcontrib>Baek, Jiyeong</creatorcontrib><creatorcontrib>Park, Jaeheung</creatorcontrib><title>Scalable Learned Geometric Feasibility for Cooperative Grasp and Motion Planning</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>This letter proposes a novel learned feasibility estimator that considers multi-modal grasp poses for grasp and motion planning. Grasp poses inherently have multi-modal structures, that is, continuous and discrete parameters. Mixed-integer programming (MIP) is one method that solves these multi-modal problems. However, searching for all the discrete parameters costs considerable time. Therefore, by learning the feasibility of each mode from the geometric variables, the problem can be solved efficiently within a given time limit. The feasibility of grasp poses is related to the pose of the object and nearby obstacles. Utilizing this information, we introduce learned geometric feasibility (LGF), which prioritizes the integer search of MIP. LGF is scalable to multiple robots and environments because it learns the feasibility using object-oriented information. It has been demonstrated to improve the number of solved MIP problems within the time limit and to be applicable to various environmental settings.</description><subject>Costs</subject><subject>Deep learning in grasping and manipulation</subject><subject>Feasibility</subject><subject>Grasping</subject><subject>Grippers</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>manipulation planning</subject><subject>Mixed integer</subject><subject>Motion planning</subject><subject>Multiple robots</subject><subject>Object oriented modeling</subject><subject>Parameters</subject><subject>Planning</subject><subject>Robots</subject><subject>Task analysis</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWGrvgpeA5635aBJzLMW2worFj3PIZieSst2syVbov3dLi3iZGZjnnYEHoVtKppQS_VC-zaeMMDblQ5WcX6AR40oVXEl5-W--RpOct4QQKpjiWozQ5t3ZxlYN4BJsaqHGK4g76FNweAk2hyo0oT9gHxNexNhBsn34AbxKNnfYtjV-iX2ILd40tm1D-3WDrrxtMkzOfYw-l08fi3VRvq6eF_OycIzRvmBUiJpwzwjRTBHnqaPCz2qrKyopVUJ4KQWhFEA7B3wmdSW5FJwrz5wEPkb3p7tdit97yL3Zxn1qh5eGqUGKYESSgSInyqWYcwJvuhR2Nh0MJeaozgzqzFGdOasbInenSACAP1w_Sq2G_S9FuGgo</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Park, Suhan</creator><creator>Kim, Hyoung Cheol</creator><creator>Baek, Jiyeong</creator><creator>Park, Jaeheung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9338-5813</orcidid><orcidid>https://orcid.org/0000-0002-5062-8264</orcidid><orcidid>https://orcid.org/0000-0001-6094-0908</orcidid><orcidid>https://orcid.org/0000-0002-9609-4616</orcidid></search><sort><creationdate>20221001</creationdate><title>Scalable Learned Geometric Feasibility for Cooperative Grasp and Motion Planning</title><author>Park, Suhan ; Kim, Hyoung Cheol ; Baek, Jiyeong ; Park, Jaeheung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-2155d03f2009270cf1c15f4da9b1611755f665011ee9cce3469b6365337f2c6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Costs</topic><topic>Deep learning in grasping and manipulation</topic><topic>Feasibility</topic><topic>Grasping</topic><topic>Grippers</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>manipulation planning</topic><topic>Mixed integer</topic><topic>Motion planning</topic><topic>Multiple robots</topic><topic>Object oriented modeling</topic><topic>Parameters</topic><topic>Planning</topic><topic>Robots</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Suhan</creatorcontrib><creatorcontrib>Kim, Hyoung Cheol</creatorcontrib><creatorcontrib>Baek, Jiyeong</creatorcontrib><creatorcontrib>Park, Jaeheung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Park, Suhan</au><au>Kim, Hyoung Cheol</au><au>Baek, Jiyeong</au><au>Park, Jaeheung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable Learned Geometric Feasibility for Cooperative Grasp and Motion Planning</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>7</volume><issue>4</issue><spage>11545</spage><epage>11552</epage><pages>11545-11552</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>This letter proposes a novel learned feasibility estimator that considers multi-modal grasp poses for grasp and motion planning. Grasp poses inherently have multi-modal structures, that is, continuous and discrete parameters. Mixed-integer programming (MIP) is one method that solves these multi-modal problems. However, searching for all the discrete parameters costs considerable time. Therefore, by learning the feasibility of each mode from the geometric variables, the problem can be solved efficiently within a given time limit. The feasibility of grasp poses is related to the pose of the object and nearby obstacles. Utilizing this information, we introduce learned geometric feasibility (LGF), which prioritizes the integer search of MIP. LGF is scalable to multiple robots and environments because it learns the feasibility using object-oriented information. It has been demonstrated to improve the number of solved MIP problems within the time limit and to be applicable to various environmental settings.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2022.3202633</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9338-5813</orcidid><orcidid>https://orcid.org/0000-0002-5062-8264</orcidid><orcidid>https://orcid.org/0000-0001-6094-0908</orcidid><orcidid>https://orcid.org/0000-0002-9609-4616</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2022-10, Vol.7 (4), p.11545-11552
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_9869726
source IEEE Electronic Library (IEL)
subjects Costs
Deep learning in grasping and manipulation
Feasibility
Grasping
Grippers
Integer programming
Linear programming
manipulation planning
Mixed integer
Motion planning
Multiple robots
Object oriented modeling
Parameters
Planning
Robots
Task analysis
title Scalable Learned Geometric Feasibility for Cooperative Grasp and Motion Planning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20Learned%20Geometric%20Feasibility%20for%20Cooperative%20Grasp%20and%20Motion%20Planning&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Park,%20Suhan&rft.date=2022-10-01&rft.volume=7&rft.issue=4&rft.spage=11545&rft.epage=11552&rft.pages=11545-11552&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2022.3202633&rft_dat=%3Cproquest_RIE%3E2711052060%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711052060&rft_id=info:pmid/&rft_ieee_id=9869726&rfr_iscdi=true