Decision Fusion Networks for Image Classification

Convolutional neural networks, in which each layer receives features from the previous layer(s) and then aggregates/abstracts higher level features from them, are widely adopted for image classification. To avoid information loss during feature aggregation/abstraction and fully utilize lower layer f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2022-08, Vol.PP, p.1-14
Hauptverfasser: Tang, Keke, Ma, Yuexin, Miao, Dingruibo, Song, Peng, Gu, Zhaoquan, Tian, Zhihong, Wang, Wenping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Convolutional neural networks, in which each layer receives features from the previous layer(s) and then aggregates/abstracts higher level features from them, are widely adopted for image classification. To avoid information loss during feature aggregation/abstraction and fully utilize lower layer features, we propose a novel decision fusion module (DFM) for making an intermediate decision based on the features in the current layer and then fuse its results with the original features before passing them to the next layers. This decision is devised to determine an auxiliary category corresponding to the category at a higher hierarchical level, which can, thus, serve as category-coherent guidance for later layers. Therefore, by stacking a collection of DFMs into a classification network, the generated decision fusion network is explicitly formulated to progressively aggregate/abstract more discriminative features guided by these decisions and then refine the decisions based on the newly generated features in a layer-by-layer manner. Comprehensive results on four benchmarks validate that the proposed DFM can bring significant improvements for various common classification networks at a minimal additional computational cost and are superior to the state-of-the-art decision fusion-based methods. In addition, we demonstrate the generalization ability of the DFM to object detection and semantic segmentation.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2022.3196129