On the Differential Spectrum and the APcN Property of a Class of Power Functions Over Finite Fields

In this paper, we investigate the power function F(x)=x^{d} over the finite field \mathbb {F}_{2^{4n}} , where n is a positive integer and d=2^{3n}+2^{2n}+2^{n}-1 . We prove that this power function is AP c\text{N} with respect to all c\in \mathbb {F}_{2^{4n}}\setminus \{1\} satisfying c^{...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2023-01, Vol.69 (1), p.582-597
Hauptverfasser: Tu, Ziran, Li, Nian, Wu, Yanan, Zeng, Xiangyong, Tang, Xiaohu, Jiang, Yupeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate the power function F(x)=x^{d} over the finite field \mathbb {F}_{2^{4n}} , where n is a positive integer and d=2^{3n}+2^{2n}+2^{n}-1 . We prove that this power function is AP c\text{N} with respect to all c\in \mathbb {F}_{2^{4n}}\setminus \{1\} satisfying c^{2^{2n}+1}=1 , and we determine its c -differential spectrum. To the best of our knowledge, this is the second class of AP c\text{N} power functions over finite fields of even characteristic. By the same proof ideas, we completely determine the differential spectrum of this function, and give an affirmative answer to a recent conjecture proposed by Budaghyan, Calderini, Carlet, Davidova and Kaleyski.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2022.3198133