A Nonlinear Model Compression Scheme Based on Variational Autoencoder for Microwave Data Inversion
We present an inversion algorithm with a deep-learning-based model compression scheme. Models are described with latent parameters of a trained variational autoencoder (VAE) neural network. Given observed data, latent parameters are inverted by minimizing the data misfit cost function using the Gaus...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2022-11, Vol.70 (11), p.11059-11069 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an inversion algorithm with a deep-learning-based model compression scheme. Models are described with latent parameters of a trained variational autoencoder (VAE) neural network. Given observed data, latent parameters are inverted by minimizing the data misfit cost function using the Gauss-Newton method. This inversion algorithm is tested using both synthetic and experimental datasets. We achieve a 0.87% compression rate while maintaining high-quality reconstruction. The deep neural network renders nonlinear model compression, which largely reduces the number of unknowns; hence, it has higher computational efficiency. Furthermore, various prior knowledge that is difficult to describe with rigorous forms can be incorporated into inversion through training the neural network, which mitigates the ill-posedness of the inverse problem. |
---|---|
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2022.3195553 |