Time Series Prediction Method of Industrial Process With Limited Data Based on Transfer Learning

Industrial time series, as a kind of data that responds to production process information, can be analyzed and predicted for effective monitoring of industrial production processes. There are problems of data shortage and algorithm cold start in industrial modeling process caused by complex working...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2023-05, Vol.19 (5), p.6872-6882
Hauptverfasser: Zhou, Xiaofeng, Zhai, Naiju, Li, Shuai, Shi, Haibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Industrial time series, as a kind of data that responds to production process information, can be analyzed and predicted for effective monitoring of industrial production processes. There are problems of data shortage and algorithm cold start in industrial modeling process caused by complex working conditions, change of data acquisition environment, and short running time of equipment. As a result, the accuracy of the existing data-driven industrial time series prediction algorithm is greatly limited. To address the aforementioned problems, we propose a new time series prediction method for industrial processes under limited data based on dynamic transfer learning in this work. This method aims to effectively use historical data of similar equipment or working conditions rather than discard them to help establish an industrial time series prediction model with limited target data. In this method, first, historical data are divided into multiple batches, and then a new multisource transfer learning framework with dynamic maximum mean difference loss is established according to the distribution distance between each batch of historical data and the limited target data at the current moment. The framework also combines multitask learning methods to establish multistep prediction model for online learning in industrial processes. Compared with other commonly used methods, experiments on two real-world datasets of solar power generation prediction and heating furnace temperature prediction demonstrate the effectiveness of the proposed method.
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2022.3191980