Unsupervised Representation Learning for Tissue Segmentation in Histopathological Images: From Global to Local Contrast

Tissue segmentation is an essential task in computational pathology. However, relevant datasets for such a pixel-level classification task are hard to obtain due to the difficulty of annotation, bringing obstacles for training a deep learning-based segmentation model. Recently, contrastive learning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2022-12, Vol.41 (12), p.3611-3623
Hauptverfasser: Gao, Zeyu, Jia, Chang, Li, Yang, Zhang, Xianli, Hong, Bangyang, Wu, Jialun, Gong, Tieliang, Wang, Chunbao, Meng, Deyu, Zheng, Yefeng, Li, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tissue segmentation is an essential task in computational pathology. However, relevant datasets for such a pixel-level classification task are hard to obtain due to the difficulty of annotation, bringing obstacles for training a deep learning-based segmentation model. Recently, contrastive learning has provided a feasible solution for mitigating the heavy reliance of deep learning models on annotation. Nevertheless, applying contrastive loss to the most abstract image representations, existing contrastive learning frameworks focus on global features, therefore, are less capable of encoding finer-grained features (e.g., pixel-level discrimination) for the tissue segmentation task. Enlightened by domain knowledge, we design three contrastive learning tasks with multi-granularity views (from global to local) for encoding necessary features into representations without accessing annotations. Specifically, we construct: (1) an image-level task to capture the difference between tissue components, i.e., encoding the component discrimination; (2) a superpixel-level task to learn discriminative representations of local regions with different tissue components, i.e., encoding the prototype discrimination; (3) a pixel-level task to encourage similar representations of different tissue components within a local region, i.e., encoding the spatial smoothness. Through our global-to-local pre-training strategy, the learned representations can reasonably capture the domain-specific and fine-grained patterns, making them easily transferable to various tissue segmentation tasks in histopathological images. We conduct extensive experiments on two tissue segmentation datasets, while considering two real-world scenarios with limited or sparse annotations. The experimental results demonstrate that our framework is superior to existing contrastive learning methods and can be easily combined with weakly supervised and semi-supervised segmentation methods.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2022.3191398