Bending Resistant Multibit Memristor for Flexible Precision Inference Engine Application
This work reports 2-bits/cell hafnium oxide-based stacked resistive random access memory devices fabricated on flexible polyimide substrates for neuromorphic applications considering the high thermal budget. The ratio of low-resistance state current ( {I}_{ \mathrm{\scriptscriptstyle ON}} ) to high-...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2022-08, Vol.69 (8), p.4737-4743 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work reports 2-bits/cell hafnium oxide-based stacked resistive random access memory devices fabricated on flexible polyimide substrates for neuromorphic applications considering the high thermal budget. The ratio of low-resistance state current ( {I}_{ \mathrm{\scriptscriptstyle ON}} ) to high-resistance state current ( {I}_{ \mathrm{\scriptscriptstyle OFF}} ) or {I}_{ \mathrm{\scriptscriptstyle ON}}/{I}_{ \mathrm{\scriptscriptstyle OFF}} for the fabricated devices was above 1.4\times10 3 with a low device-to-device variation at 100 \boldsymbol {\mu }\text{A} current compliance. The mechanical stability over 10 4 bending cycles at a 5 mm bending radius and endurance over 10 6 WRITE cycles makes these devices suitable for online neural network training. The data retention capability over 10 4 s at 125°C also infuses these devices' long-term inference capability. Furthermore, the performance of the devices has been verified for neuromorphic applications by system-level simulations with experimentally calibrated data. The system-level simulation reveals only a 2% loss in inference accuracy over ten years from the baseline. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2022.3186965 |