An Efficient Load-Balancing Scheme for UAVs in 5G Infrastructure

Deploying caches at the macro base station (MBS), unmanned aerial vehicle (UAV), and mobile user caches can effectively reduce the retransmission of duplicate content in the 5G cellular wireless hotspot network. As the storage capacity of MBS is much higher than UAVs and other hotspot cache nodes, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE systems journal 2023-03, Vol.17 (1), p.780-791
Hauptverfasser: Furqan, Muhammad, Ali, Zakir, Jan, Qasim, Nazir, Shah, Iqbal, Shahid, Huang, Yongming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deploying caches at the macro base station (MBS), unmanned aerial vehicle (UAV), and mobile user caches can effectively reduce the retransmission of duplicate content in the 5G cellular wireless hotspot network. As the storage capacity of MBS is much higher than UAVs and other hotspot cache nodes, the MBS advertises its vacant storage space so that the participating nodes can rent it. In this article, we proposed an efficient load-balancing scheme by using the Stackelberg equilibrium game model. The proposed scheme sets a unit price (\xi) based on constraints to avoid data traffic uncertainty caused by participation nodes and rent vacant space of MBS. Furthermore, we proposed an efficient scheme for the placement and delivery of hotspot content by using Knapsack and Zipf. Moreover, ensuring the device-to-device link support also minimizes transportation costs. The results validate that considering the above-mentioned techniques significantly improves the overall hotspot network performance.
ISSN:1932-8184
1937-9234
DOI:10.1109/JSYST.2022.3184838