Dynamic Temperature Scaling in Contrastive Self-Supervised Learning for Sensor-Based Human Activity Recognition

The use of deep neural networks in sensor-based Human Activity Recognition has led to considerably improved recognition rates in comparison to more traditional techniques. Nonetheless, these improvements usually rely on collecting and annotating massive amounts of sensor data, a time-consuming and e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biometrics, behavior, and identity science behavior, and identity science, 2022-10, Vol.4 (4), p.498-507
Hauptverfasser: Khaertdinov, Bulat, Asteriadis, Stylianos, Ghaleb, Esam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of deep neural networks in sensor-based Human Activity Recognition has led to considerably improved recognition rates in comparison to more traditional techniques. Nonetheless, these improvements usually rely on collecting and annotating massive amounts of sensor data, a time-consuming and expensive task. In this paper, inspired by the impressive performance of Contrastive Learning approaches in Self-Supervised Learning settings, we introduce a novel method based on the SimCLR framework and a Transformer-like model. The proposed algorithm addresses the problem of negative pairs in SimCLR by using dynamic temperature scaling within a contrastive loss function. While the original SimCLR framework scales similarities between features of the augmented views by a constant temperature parameter, our method dynamically computes temperature values for scaling. Dynamic temperature is based on instance-level similarity values extracted by an additional model pre-trained on initial instances beforehand. The proposed approach demonstrates state-of-the-art performance on three widely used datasets in sensor-based HAR, namely MobiAct, UCI-HAR and USC-HAD. Moreover, it is more robust than the identical supervised models and models trained with constant temperature in semi-supervised and transfer learning scenarios.
ISSN:2637-6407
2637-6407
DOI:10.1109/TBIOM.2022.3180591