Multi-Task Disentangled Autoencoder for Time-Series Data in Glucose Dynamics

The objective of this study is to propose MD-VAE: a multi-task disentangled variational autoencoders (VAE) for exploring characteristics of latent representations (LR) and exploiting LR for diverse tasks including glucose forecasting, event detection, and temporal clustering. We applied MD-VAE to on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2022-09, Vol.26 (9), p.4702-4713
Hauptverfasser: Lim, Min Hyuk, Cho, Young Min, Kim, Sungwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this study is to propose MD-VAE: a multi-task disentangled variational autoencoders (VAE) for exploring characteristics of latent representations (LR) and exploiting LR for diverse tasks including glucose forecasting, event detection, and temporal clustering. We applied MD-VAE to one virtual continuous glucose monitoring (CGM) data from an FDA-approved Type 1 Diabetes Mellitus simulator (T1DMS) and one publicly available CGM data of real patients for glucose dynamics of Type 1 Diabetes Mellitus. LR captured meaningful information to be exploited for diverse tasks, and was able to differentiate characteristics of sequences with clinical parameters. LR and generative models have received relatively little attention for analyzing CGM data so far. However, as proposed in our study, VAE has the potential to integrate not only current but also future information on glucose dynamics and unexpected events including interactions of devices in the data-driven manner. We expect that our model can provide complementary views on the analysis of CGM data.
ISSN:2168-2194
2168-2208
DOI:10.1109/JBHI.2022.3175928