Push-Down Trees: Optimal Self-Adjusting Complete Trees

This paper studies a fundamental algorithmic problem related to the design of demand-aware networks: networks whose topologies adjust toward the traffic patterns they serve, in an online manner. The goal is to strike a tradeoff between the benefits of such adjustments (shorter routes) and their cost...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on networking 2022-12, Vol.30 (6), p.2419-2432
Hauptverfasser: Avin, Chen, Mondal, Kaushik, Schmid, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies a fundamental algorithmic problem related to the design of demand-aware networks: networks whose topologies adjust toward the traffic patterns they serve, in an online manner. The goal is to strike a tradeoff between the benefits of such adjustments (shorter routes) and their costs (reconfigurations). In particular, we consider the problem of designing a self-adjusting tree network which serves single-source, multi-destination communication. The problem is a central building block for more general self-adjusting network designs and has interesting connections to self-adjusting datastructures. We present two constant-competitive online algorithms for this problem, one randomized and one deterministic. Our approach is based on a natural notion of Most Recently Used (MRU) tree, maintaining a working set. We prove that the working set is a cost lower bound for any online algorithm, and then present a randomized algorithm RANDOM- PUSH which approximates such an MRU tree at low cost, by pushing less recently used communication partners down the tree, along a random walk. Our deterministic algorithm Move-Half does not directly maintain an MRU tree, but its cost is still proportional to the cost of an MRU tree, and also matches the working set lower bound.
ISSN:1063-6692
1558-2566
DOI:10.1109/TNET.2022.3174118