Robust ISAR Target Recognition Based on ADRISAR-Net

Due to the inherent unknown image deformation among the training and test samples, performance of the deep convolutional neural network (CNN) will be degraded for Inverse Synthetic Aperture Radar (ISAR) automatic target recognition. Meanwhile, traditional CNN only captures the local spatial informat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2022-12, Vol.58 (6), p.5494-5505
Hauptverfasser: Zhou, Xuening, Bai, Xueru, Wang, Li, Zhou, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the inherent unknown image deformation among the training and test samples, performance of the deep convolutional neural network (CNN) will be degraded for Inverse Synthetic Aperture Radar (ISAR) automatic target recognition. Meanwhile, traditional CNN only captures the local spatial information due to small receptive fields, thus, neglects the global information useful for recognition. To tackle these issues, this article proposes the attention-augmented deformation robust ISAR image recognition network, dubbed as ADRISAR-Net. The model adopts the inverse compositional spatial transformer for automatic image deformation adjustment, and performs joint local and global feature extractions by the attention-augmented CNN. Finally, the softmax classifier outputs the recognition results. The proposed ADRISAR-Net is end-to-end trainable, and achieves higher recognition accuracy for the four-satellite and three-airplane ISAR image data sets generated by electromagnetic computing.
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2022.3174826