Wide Measurement Range Distributed Strain Sensing With Phase-Accumulation Optical Frequency Domain Reflectometry

In this paper, a wide measurement range strain sensing method based on phase-accumulation optical frequency domain reflectometry (OFDR) is proposed. Different from the traditional phase demodulation method that analyzes the relative phase between the measurement signal and the reference signal, we a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2022-08, Vol.40 (15), p.5307-5315
Hauptverfasser: Wang, Mengfan, Feng, Wei, Xie, Kang, Jia, Hailun, Lin, Jiping, Tu, Guojie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5315
container_issue 15
container_start_page 5307
container_title Journal of lightwave technology
container_volume 40
creator Wang, Mengfan
Feng, Wei
Xie, Kang
Jia, Hailun
Lin, Jiping
Tu, Guojie
description In this paper, a wide measurement range strain sensing method based on phase-accumulation optical frequency domain reflectometry (OFDR) is proposed. Different from the traditional phase demodulation method that analyzes the relative phase between the measurement signal and the reference signal, we achieve large measurement range strain sensing by accumulating the relative phases of adjacent scanning cycles. The proposal can break through the limitation of phase unwrapping in the traditional phase method, and realize the low measurement error in the accumulation process. In the experiments, when the wavelength scanning range is only 0.138 nm, we achieve quasi-static strain measurement with a spatial resolution of 1.8 cm, a maximum strain value of about 14000 μϵ , and the noise level of about 0.601 rad representing the strain resolution of 0.48 μϵ. We also analyze the influence of random noise on the method, and verify the good robustness of the phase accumulation method. The research of this paper provides a useful reference for the development of low-cost OFDR system for distributed strain/temperature measurement.
doi_str_mv 10.1109/JLT.2022.3174653
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9773970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9773970</ieee_id><sourcerecordid>2695153315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-448debd2e48576b2a1c075adf9a9854f4291639106998d911b35f076bbd1148e3</originalsourceid><addsrcrecordid>eNo9kMtuwjAQRa2qlUpp95W6sdR1qB9xHC8RlD5ERQVULCPHmYBRHtR2Fvx9g0BdjGZzz8zVQeiRkhGlRL18ztcjRhgbcSrjRPArNKBCpBFjlF-jAZGcR6lk8S26835PCI3jVA7QYWMLwF-gfeeghibgpW62gKfWB2fzLkCBV8Fp2-AVNN42W7yxYYe_d9pDNDamq7tKB9s2eHEI1ugKzxz8dtCYI5629QlcQlmBCW0NwR3v0U2pKw8Plz1EP7PX9eQ9mi_ePibjeWT6xiHq2xWQFwziVMgkZ5oaIoUuSqVVKuIyZoomXFGSKJUWitKci5L0ybygNE6BD9Hz-e7BtX0dH7J927mmf5mxRAkqOO9niMg5ZVzrvYMyOzhba3fMKMlOXrPea3byml289sjTGbEA8B9XUnIlCf8DnDx0cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695153315</pqid></control><display><type>article</type><title>Wide Measurement Range Distributed Strain Sensing With Phase-Accumulation Optical Frequency Domain Reflectometry</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Mengfan ; Feng, Wei ; Xie, Kang ; Jia, Hailun ; Lin, Jiping ; Tu, Guojie</creator><creatorcontrib>Wang, Mengfan ; Feng, Wei ; Xie, Kang ; Jia, Hailun ; Lin, Jiping ; Tu, Guojie</creatorcontrib><description>In this paper, a wide measurement range strain sensing method based on phase-accumulation optical frequency domain reflectometry (OFDR) is proposed. Different from the traditional phase demodulation method that analyzes the relative phase between the measurement signal and the reference signal, we achieve large measurement range strain sensing by accumulating the relative phases of adjacent scanning cycles. The proposal can break through the limitation of phase unwrapping in the traditional phase method, and realize the low measurement error in the accumulation process. In the experiments, when the wavelength scanning range is only 0.138 nm, we achieve quasi-static strain measurement with a spatial resolution of 1.8 cm, a maximum strain value of about 14000 μϵ , and the noise level of about 0.601 rad representing the strain resolution of 0.48 μϵ. We also analyze the influence of random noise on the method, and verify the good robustness of the phase accumulation method. The research of this paper provides a useful reference for the development of low-cost OFDR system for distributed strain/temperature measurement.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2022.3174653</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accumulation ; Distributed optical fiber sensing ; Error analysis ; Frequency domain analysis ; Noise levels ; Optical fiber sensors ; Optical frequency ; Phase demodulation ; Phase measurement ; Phase unwrapping ; Random noise ; Reference signals ; Reflectometry ; Scanning ; Scattering ; Sensors ; Spatial resolution ; Strain ; Strain measurement ; Temperature measurement ; Wavelength measurement ; wide measurement range ; Φ-OFDR</subject><ispartof>Journal of lightwave technology, 2022-08, Vol.40 (15), p.5307-5315</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-448debd2e48576b2a1c075adf9a9854f4291639106998d911b35f076bbd1148e3</citedby><cites>FETCH-LOGICAL-c221t-448debd2e48576b2a1c075adf9a9854f4291639106998d911b35f076bbd1148e3</cites><orcidid>0000-0002-3636-3570 ; 0000-0002-6239-7213 ; 0000-0002-2458-8254 ; 0000-0002-4049-8451 ; 0000-0001-6927-3427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9773970$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9773970$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Mengfan</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Xie, Kang</creatorcontrib><creatorcontrib>Jia, Hailun</creatorcontrib><creatorcontrib>Lin, Jiping</creatorcontrib><creatorcontrib>Tu, Guojie</creatorcontrib><title>Wide Measurement Range Distributed Strain Sensing With Phase-Accumulation Optical Frequency Domain Reflectometry</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>In this paper, a wide measurement range strain sensing method based on phase-accumulation optical frequency domain reflectometry (OFDR) is proposed. Different from the traditional phase demodulation method that analyzes the relative phase between the measurement signal and the reference signal, we achieve large measurement range strain sensing by accumulating the relative phases of adjacent scanning cycles. The proposal can break through the limitation of phase unwrapping in the traditional phase method, and realize the low measurement error in the accumulation process. In the experiments, when the wavelength scanning range is only 0.138 nm, we achieve quasi-static strain measurement with a spatial resolution of 1.8 cm, a maximum strain value of about 14000 μϵ , and the noise level of about 0.601 rad representing the strain resolution of 0.48 μϵ. We also analyze the influence of random noise on the method, and verify the good robustness of the phase accumulation method. The research of this paper provides a useful reference for the development of low-cost OFDR system for distributed strain/temperature measurement.</description><subject>Accumulation</subject><subject>Distributed optical fiber sensing</subject><subject>Error analysis</subject><subject>Frequency domain analysis</subject><subject>Noise levels</subject><subject>Optical fiber sensors</subject><subject>Optical frequency</subject><subject>Phase demodulation</subject><subject>Phase measurement</subject><subject>Phase unwrapping</subject><subject>Random noise</subject><subject>Reference signals</subject><subject>Reflectometry</subject><subject>Scanning</subject><subject>Scattering</subject><subject>Sensors</subject><subject>Spatial resolution</subject><subject>Strain</subject><subject>Strain measurement</subject><subject>Temperature measurement</subject><subject>Wavelength measurement</subject><subject>wide measurement range</subject><subject>Φ-OFDR</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtuwjAQRa2qlUpp95W6sdR1qB9xHC8RlD5ERQVULCPHmYBRHtR2Fvx9g0BdjGZzz8zVQeiRkhGlRL18ztcjRhgbcSrjRPArNKBCpBFjlF-jAZGcR6lk8S26835PCI3jVA7QYWMLwF-gfeeghibgpW62gKfWB2fzLkCBV8Fp2-AVNN42W7yxYYe_d9pDNDamq7tKB9s2eHEI1ugKzxz8dtCYI5629QlcQlmBCW0NwR3v0U2pKw8Plz1EP7PX9eQ9mi_ePibjeWT6xiHq2xWQFwziVMgkZ5oaIoUuSqVVKuIyZoomXFGSKJUWitKci5L0ybygNE6BD9Hz-e7BtX0dH7J927mmf5mxRAkqOO9niMg5ZVzrvYMyOzhba3fMKMlOXrPea3byml289sjTGbEA8B9XUnIlCf8DnDx0cA</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Wang, Mengfan</creator><creator>Feng, Wei</creator><creator>Xie, Kang</creator><creator>Jia, Hailun</creator><creator>Lin, Jiping</creator><creator>Tu, Guojie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3636-3570</orcidid><orcidid>https://orcid.org/0000-0002-6239-7213</orcidid><orcidid>https://orcid.org/0000-0002-2458-8254</orcidid><orcidid>https://orcid.org/0000-0002-4049-8451</orcidid><orcidid>https://orcid.org/0000-0001-6927-3427</orcidid></search><sort><creationdate>20220801</creationdate><title>Wide Measurement Range Distributed Strain Sensing With Phase-Accumulation Optical Frequency Domain Reflectometry</title><author>Wang, Mengfan ; Feng, Wei ; Xie, Kang ; Jia, Hailun ; Lin, Jiping ; Tu, Guojie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-448debd2e48576b2a1c075adf9a9854f4291639106998d911b35f076bbd1148e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accumulation</topic><topic>Distributed optical fiber sensing</topic><topic>Error analysis</topic><topic>Frequency domain analysis</topic><topic>Noise levels</topic><topic>Optical fiber sensors</topic><topic>Optical frequency</topic><topic>Phase demodulation</topic><topic>Phase measurement</topic><topic>Phase unwrapping</topic><topic>Random noise</topic><topic>Reference signals</topic><topic>Reflectometry</topic><topic>Scanning</topic><topic>Scattering</topic><topic>Sensors</topic><topic>Spatial resolution</topic><topic>Strain</topic><topic>Strain measurement</topic><topic>Temperature measurement</topic><topic>Wavelength measurement</topic><topic>wide measurement range</topic><topic>Φ-OFDR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mengfan</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Xie, Kang</creatorcontrib><creatorcontrib>Jia, Hailun</creatorcontrib><creatorcontrib>Lin, Jiping</creatorcontrib><creatorcontrib>Tu, Guojie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Mengfan</au><au>Feng, Wei</au><au>Xie, Kang</au><au>Jia, Hailun</au><au>Lin, Jiping</au><au>Tu, Guojie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wide Measurement Range Distributed Strain Sensing With Phase-Accumulation Optical Frequency Domain Reflectometry</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>40</volume><issue>15</issue><spage>5307</spage><epage>5315</epage><pages>5307-5315</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>In this paper, a wide measurement range strain sensing method based on phase-accumulation optical frequency domain reflectometry (OFDR) is proposed. Different from the traditional phase demodulation method that analyzes the relative phase between the measurement signal and the reference signal, we achieve large measurement range strain sensing by accumulating the relative phases of adjacent scanning cycles. The proposal can break through the limitation of phase unwrapping in the traditional phase method, and realize the low measurement error in the accumulation process. In the experiments, when the wavelength scanning range is only 0.138 nm, we achieve quasi-static strain measurement with a spatial resolution of 1.8 cm, a maximum strain value of about 14000 μϵ , and the noise level of about 0.601 rad representing the strain resolution of 0.48 μϵ. We also analyze the influence of random noise on the method, and verify the good robustness of the phase accumulation method. The research of this paper provides a useful reference for the development of low-cost OFDR system for distributed strain/temperature measurement.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2022.3174653</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3636-3570</orcidid><orcidid>https://orcid.org/0000-0002-6239-7213</orcidid><orcidid>https://orcid.org/0000-0002-2458-8254</orcidid><orcidid>https://orcid.org/0000-0002-4049-8451</orcidid><orcidid>https://orcid.org/0000-0001-6927-3427</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2022-08, Vol.40 (15), p.5307-5315
issn 0733-8724
1558-2213
language eng
recordid cdi_ieee_primary_9773970
source IEEE Electronic Library (IEL)
subjects Accumulation
Distributed optical fiber sensing
Error analysis
Frequency domain analysis
Noise levels
Optical fiber sensors
Optical frequency
Phase demodulation
Phase measurement
Phase unwrapping
Random noise
Reference signals
Reflectometry
Scanning
Scattering
Sensors
Spatial resolution
Strain
Strain measurement
Temperature measurement
Wavelength measurement
wide measurement range
Φ-OFDR
title Wide Measurement Range Distributed Strain Sensing With Phase-Accumulation Optical Frequency Domain Reflectometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wide%20Measurement%20Range%20Distributed%20Strain%20Sensing%20With%20Phase-Accumulation%20Optical%20Frequency%20Domain%20Reflectometry&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Wang,%20Mengfan&rft.date=2022-08-01&rft.volume=40&rft.issue=15&rft.spage=5307&rft.epage=5315&rft.pages=5307-5315&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2022.3174653&rft_dat=%3Cproquest_RIE%3E2695153315%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695153315&rft_id=info:pmid/&rft_ieee_id=9773970&rfr_iscdi=true