Incomplete Multi-View Clustering With Sample-Level Auto-Weighted Graph Fusion
Incomplete multi-view clustering (IMC) has received considerable attention due to its flexibility in fusing the multi-view information when the view samples are partly missing. However, existing methods seldom consider the affection of the missing samples to the contributions of the views. In this p...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2023-06, Vol.35 (6), p.6504-6511 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6511 |
---|---|
container_issue | 6 |
container_start_page | 6504 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 35 |
creator | Liang, Naiyao Yang, Zuyuan Xie, Shengli |
description | Incomplete multi-view clustering (IMC) has received considerable attention due to its flexibility in fusing the multi-view information when the view samples are partly missing. However, existing methods seldom consider the affection of the missing samples to the contributions of the views. In this paper, we propose a novel graph fusion based IMC model (SAGF_IMC) to handle this problem. Instead of directly weighting the whole view, SAGF_IMC learns the sample-level auto weight, which allows considering both the contributions of different views and the affection of the missing samples. An effective iterative algorithm is developed, together with its convergence analysis. Experiments are provided to demonstrate that SAGF_IMC is superior to the related state-of-the-art methods by using several real-world datasets. |
doi_str_mv | 10.1109/TKDE.2022.3171911 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9767686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9767686</ieee_id><sourcerecordid>2808830498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-6d934f3451380d69eb906b634a1bd7d775cf5afb3ea534f81e6a39af447561e53</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhhujiYj-AOOliefF3e5njwQBiRAPohw323YKS0qLu1uN_942EE_zTvK8M8kTRfcEjwjB6dP69Xk6SnCSjCiRJCXkIhoQzhVKuuWyy5gRxCiT19GN93uMsZKKDKLVos6bw7GCAPGqrYJFnxZ-4knV-gDO1tt4Y8Mufjc9g5bwDVU8bkODNmC3uwBFPHfmuItnrbdNfRtdlabycHeew-hjNl1PXtDybb6YjJcoTxIakChSykrKOKEKFyKFLMUiE5QZkhWykJLnJTdlRsHwDlQEhKGpKRmTXBDgdBg9nu4eXfPVgg9637Su7l7qRGGlKGap6ihyonLXeO-g1EdnD8b9aoJ1b0331nRvTZ-tdZ2HU8cCwD-fSiGFEvQPF1ZnvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808830498</pqid></control><display><type>article</type><title>Incomplete Multi-View Clustering With Sample-Level Auto-Weighted Graph Fusion</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Naiyao ; Yang, Zuyuan ; Xie, Shengli</creator><creatorcontrib>Liang, Naiyao ; Yang, Zuyuan ; Xie, Shengli</creatorcontrib><description>Incomplete multi-view clustering (IMC) has received considerable attention due to its flexibility in fusing the multi-view information when the view samples are partly missing. However, existing methods seldom consider the affection of the missing samples to the contributions of the views. In this paper, we propose a novel graph fusion based IMC model (SAGF_IMC) to handle this problem. Instead of directly weighting the whole view, SAGF_IMC learns the sample-level auto weight, which allows considering both the contributions of different views and the affection of the missing samples. An effective iterative algorithm is developed, together with its convergence analysis. Experiments are provided to demonstrate that SAGF_IMC is superior to the related state-of-the-art methods by using several real-world datasets.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3171911</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; auto-weight learning ; Clustering ; Computational modeling ; Convergence ; Fuses ; graph fusion ; Incomplete multi-view clustering ; Indexes ; Iterative algorithms ; Iterative methods ; Laplace equations ; Optimization ; sample weight</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-06, Vol.35 (6), p.6504-6511</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-6d934f3451380d69eb906b634a1bd7d775cf5afb3ea534f81e6a39af447561e53</citedby><cites>FETCH-LOGICAL-c223t-6d934f3451380d69eb906b634a1bd7d775cf5afb3ea534f81e6a39af447561e53</cites><orcidid>0000-0003-0946-7494 ; 0000-0003-2041-5214 ; 0000-0003-3646-2066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9767686$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9767686$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Naiyao</creatorcontrib><creatorcontrib>Yang, Zuyuan</creatorcontrib><creatorcontrib>Xie, Shengli</creatorcontrib><title>Incomplete Multi-View Clustering With Sample-Level Auto-Weighted Graph Fusion</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Incomplete multi-view clustering (IMC) has received considerable attention due to its flexibility in fusing the multi-view information when the view samples are partly missing. However, existing methods seldom consider the affection of the missing samples to the contributions of the views. In this paper, we propose a novel graph fusion based IMC model (SAGF_IMC) to handle this problem. Instead of directly weighting the whole view, SAGF_IMC learns the sample-level auto weight, which allows considering both the contributions of different views and the affection of the missing samples. An effective iterative algorithm is developed, together with its convergence analysis. Experiments are provided to demonstrate that SAGF_IMC is superior to the related state-of-the-art methods by using several real-world datasets.</description><subject>Analytical models</subject><subject>auto-weight learning</subject><subject>Clustering</subject><subject>Computational modeling</subject><subject>Convergence</subject><subject>Fuses</subject><subject>graph fusion</subject><subject>Incomplete multi-view clustering</subject><subject>Indexes</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Laplace equations</subject><subject>Optimization</subject><subject>sample weight</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhhujiYj-AOOliefF3e5njwQBiRAPohw323YKS0qLu1uN_942EE_zTvK8M8kTRfcEjwjB6dP69Xk6SnCSjCiRJCXkIhoQzhVKuuWyy5gRxCiT19GN93uMsZKKDKLVos6bw7GCAPGqrYJFnxZ-4knV-gDO1tt4Y8Mufjc9g5bwDVU8bkODNmC3uwBFPHfmuItnrbdNfRtdlabycHeew-hjNl1PXtDybb6YjJcoTxIakChSykrKOKEKFyKFLMUiE5QZkhWykJLnJTdlRsHwDlQEhKGpKRmTXBDgdBg9nu4eXfPVgg9637Su7l7qRGGlKGap6ihyonLXeO-g1EdnD8b9aoJ1b0331nRvTZ-tdZ2HU8cCwD-fSiGFEvQPF1ZnvA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Liang, Naiyao</creator><creator>Yang, Zuyuan</creator><creator>Xie, Shengli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0946-7494</orcidid><orcidid>https://orcid.org/0000-0003-2041-5214</orcidid><orcidid>https://orcid.org/0000-0003-3646-2066</orcidid></search><sort><creationdate>20230601</creationdate><title>Incomplete Multi-View Clustering With Sample-Level Auto-Weighted Graph Fusion</title><author>Liang, Naiyao ; Yang, Zuyuan ; Xie, Shengli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-6d934f3451380d69eb906b634a1bd7d775cf5afb3ea534f81e6a39af447561e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical models</topic><topic>auto-weight learning</topic><topic>Clustering</topic><topic>Computational modeling</topic><topic>Convergence</topic><topic>Fuses</topic><topic>graph fusion</topic><topic>Incomplete multi-view clustering</topic><topic>Indexes</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Laplace equations</topic><topic>Optimization</topic><topic>sample weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Naiyao</creatorcontrib><creatorcontrib>Yang, Zuyuan</creatorcontrib><creatorcontrib>Xie, Shengli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Naiyao</au><au>Yang, Zuyuan</au><au>Xie, Shengli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incomplete Multi-View Clustering With Sample-Level Auto-Weighted Graph Fusion</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>35</volume><issue>6</issue><spage>6504</spage><epage>6511</epage><pages>6504-6511</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Incomplete multi-view clustering (IMC) has received considerable attention due to its flexibility in fusing the multi-view information when the view samples are partly missing. However, existing methods seldom consider the affection of the missing samples to the contributions of the views. In this paper, we propose a novel graph fusion based IMC model (SAGF_IMC) to handle this problem. Instead of directly weighting the whole view, SAGF_IMC learns the sample-level auto weight, which allows considering both the contributions of different views and the affection of the missing samples. An effective iterative algorithm is developed, together with its convergence analysis. Experiments are provided to demonstrate that SAGF_IMC is superior to the related state-of-the-art methods by using several real-world datasets.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3171911</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0946-7494</orcidid><orcidid>https://orcid.org/0000-0003-2041-5214</orcidid><orcidid>https://orcid.org/0000-0003-3646-2066</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2023-06, Vol.35 (6), p.6504-6511 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_ieee_primary_9767686 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models auto-weight learning Clustering Computational modeling Convergence Fuses graph fusion Incomplete multi-view clustering Indexes Iterative algorithms Iterative methods Laplace equations Optimization sample weight |
title | Incomplete Multi-View Clustering With Sample-Level Auto-Weighted Graph Fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A22%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incomplete%20Multi-View%20Clustering%20With%20Sample-Level%20Auto-Weighted%20Graph%20Fusion&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Liang,%20Naiyao&rft.date=2023-06-01&rft.volume=35&rft.issue=6&rft.spage=6504&rft.epage=6511&rft.pages=6504-6511&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3171911&rft_dat=%3Cproquest_RIE%3E2808830498%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808830498&rft_id=info:pmid/&rft_ieee_id=9767686&rfr_iscdi=true |