Incomplete Multi-View Clustering With Sample-Level Auto-Weighted Graph Fusion

Incomplete multi-view clustering (IMC) has received considerable attention due to its flexibility in fusing the multi-view information when the view samples are partly missing. However, existing methods seldom consider the affection of the missing samples to the contributions of the views. In this p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2023-06, Vol.35 (6), p.6504-6511
Hauptverfasser: Liang, Naiyao, Yang, Zuyuan, Xie, Shengli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6511
container_issue 6
container_start_page 6504
container_title IEEE transactions on knowledge and data engineering
container_volume 35
creator Liang, Naiyao
Yang, Zuyuan
Xie, Shengli
description Incomplete multi-view clustering (IMC) has received considerable attention due to its flexibility in fusing the multi-view information when the view samples are partly missing. However, existing methods seldom consider the affection of the missing samples to the contributions of the views. In this paper, we propose a novel graph fusion based IMC model (SAGF_IMC) to handle this problem. Instead of directly weighting the whole view, SAGF_IMC learns the sample-level auto weight, which allows considering both the contributions of different views and the affection of the missing samples. An effective iterative algorithm is developed, together with its convergence analysis. Experiments are provided to demonstrate that SAGF_IMC is superior to the related state-of-the-art methods by using several real-world datasets.
doi_str_mv 10.1109/TKDE.2022.3171911
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9767686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9767686</ieee_id><sourcerecordid>2808830498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-6d934f3451380d69eb906b634a1bd7d775cf5afb3ea534f81e6a39af447561e53</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhhujiYj-AOOliefF3e5njwQBiRAPohw323YKS0qLu1uN_942EE_zTvK8M8kTRfcEjwjB6dP69Xk6SnCSjCiRJCXkIhoQzhVKuuWyy5gRxCiT19GN93uMsZKKDKLVos6bw7GCAPGqrYJFnxZ-4knV-gDO1tt4Y8Mufjc9g5bwDVU8bkODNmC3uwBFPHfmuItnrbdNfRtdlabycHeew-hjNl1PXtDybb6YjJcoTxIakChSykrKOKEKFyKFLMUiE5QZkhWykJLnJTdlRsHwDlQEhKGpKRmTXBDgdBg9nu4eXfPVgg9637Su7l7qRGGlKGap6ihyonLXeO-g1EdnD8b9aoJ1b0331nRvTZ-tdZ2HU8cCwD-fSiGFEvQPF1ZnvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808830498</pqid></control><display><type>article</type><title>Incomplete Multi-View Clustering With Sample-Level Auto-Weighted Graph Fusion</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Naiyao ; Yang, Zuyuan ; Xie, Shengli</creator><creatorcontrib>Liang, Naiyao ; Yang, Zuyuan ; Xie, Shengli</creatorcontrib><description>Incomplete multi-view clustering (IMC) has received considerable attention due to its flexibility in fusing the multi-view information when the view samples are partly missing. However, existing methods seldom consider the affection of the missing samples to the contributions of the views. In this paper, we propose a novel graph fusion based IMC model (SAGF_IMC) to handle this problem. Instead of directly weighting the whole view, SAGF_IMC learns the sample-level auto weight, which allows considering both the contributions of different views and the affection of the missing samples. An effective iterative algorithm is developed, together with its convergence analysis. Experiments are provided to demonstrate that SAGF_IMC is superior to the related state-of-the-art methods by using several real-world datasets.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3171911</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; auto-weight learning ; Clustering ; Computational modeling ; Convergence ; Fuses ; graph fusion ; Incomplete multi-view clustering ; Indexes ; Iterative algorithms ; Iterative methods ; Laplace equations ; Optimization ; sample weight</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-06, Vol.35 (6), p.6504-6511</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-6d934f3451380d69eb906b634a1bd7d775cf5afb3ea534f81e6a39af447561e53</citedby><cites>FETCH-LOGICAL-c223t-6d934f3451380d69eb906b634a1bd7d775cf5afb3ea534f81e6a39af447561e53</cites><orcidid>0000-0003-0946-7494 ; 0000-0003-2041-5214 ; 0000-0003-3646-2066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9767686$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9767686$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Naiyao</creatorcontrib><creatorcontrib>Yang, Zuyuan</creatorcontrib><creatorcontrib>Xie, Shengli</creatorcontrib><title>Incomplete Multi-View Clustering With Sample-Level Auto-Weighted Graph Fusion</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Incomplete multi-view clustering (IMC) has received considerable attention due to its flexibility in fusing the multi-view information when the view samples are partly missing. However, existing methods seldom consider the affection of the missing samples to the contributions of the views. In this paper, we propose a novel graph fusion based IMC model (SAGF_IMC) to handle this problem. Instead of directly weighting the whole view, SAGF_IMC learns the sample-level auto weight, which allows considering both the contributions of different views and the affection of the missing samples. An effective iterative algorithm is developed, together with its convergence analysis. Experiments are provided to demonstrate that SAGF_IMC is superior to the related state-of-the-art methods by using several real-world datasets.</description><subject>Analytical models</subject><subject>auto-weight learning</subject><subject>Clustering</subject><subject>Computational modeling</subject><subject>Convergence</subject><subject>Fuses</subject><subject>graph fusion</subject><subject>Incomplete multi-view clustering</subject><subject>Indexes</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Laplace equations</subject><subject>Optimization</subject><subject>sample weight</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhhujiYj-AOOliefF3e5njwQBiRAPohw323YKS0qLu1uN_942EE_zTvK8M8kTRfcEjwjB6dP69Xk6SnCSjCiRJCXkIhoQzhVKuuWyy5gRxCiT19GN93uMsZKKDKLVos6bw7GCAPGqrYJFnxZ-4knV-gDO1tt4Y8Mufjc9g5bwDVU8bkODNmC3uwBFPHfmuItnrbdNfRtdlabycHeew-hjNl1PXtDybb6YjJcoTxIakChSykrKOKEKFyKFLMUiE5QZkhWykJLnJTdlRsHwDlQEhKGpKRmTXBDgdBg9nu4eXfPVgg9637Su7l7qRGGlKGap6ihyonLXeO-g1EdnD8b9aoJ1b0331nRvTZ-tdZ2HU8cCwD-fSiGFEvQPF1ZnvA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Liang, Naiyao</creator><creator>Yang, Zuyuan</creator><creator>Xie, Shengli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0946-7494</orcidid><orcidid>https://orcid.org/0000-0003-2041-5214</orcidid><orcidid>https://orcid.org/0000-0003-3646-2066</orcidid></search><sort><creationdate>20230601</creationdate><title>Incomplete Multi-View Clustering With Sample-Level Auto-Weighted Graph Fusion</title><author>Liang, Naiyao ; Yang, Zuyuan ; Xie, Shengli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-6d934f3451380d69eb906b634a1bd7d775cf5afb3ea534f81e6a39af447561e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical models</topic><topic>auto-weight learning</topic><topic>Clustering</topic><topic>Computational modeling</topic><topic>Convergence</topic><topic>Fuses</topic><topic>graph fusion</topic><topic>Incomplete multi-view clustering</topic><topic>Indexes</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Laplace equations</topic><topic>Optimization</topic><topic>sample weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Naiyao</creatorcontrib><creatorcontrib>Yang, Zuyuan</creatorcontrib><creatorcontrib>Xie, Shengli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Naiyao</au><au>Yang, Zuyuan</au><au>Xie, Shengli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incomplete Multi-View Clustering With Sample-Level Auto-Weighted Graph Fusion</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>35</volume><issue>6</issue><spage>6504</spage><epage>6511</epage><pages>6504-6511</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Incomplete multi-view clustering (IMC) has received considerable attention due to its flexibility in fusing the multi-view information when the view samples are partly missing. However, existing methods seldom consider the affection of the missing samples to the contributions of the views. In this paper, we propose a novel graph fusion based IMC model (SAGF_IMC) to handle this problem. Instead of directly weighting the whole view, SAGF_IMC learns the sample-level auto weight, which allows considering both the contributions of different views and the affection of the missing samples. An effective iterative algorithm is developed, together with its convergence analysis. Experiments are provided to demonstrate that SAGF_IMC is superior to the related state-of-the-art methods by using several real-world datasets.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3171911</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0946-7494</orcidid><orcidid>https://orcid.org/0000-0003-2041-5214</orcidid><orcidid>https://orcid.org/0000-0003-3646-2066</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2023-06, Vol.35 (6), p.6504-6511
issn 1041-4347
1558-2191
language eng
recordid cdi_ieee_primary_9767686
source IEEE Electronic Library (IEL)
subjects Analytical models
auto-weight learning
Clustering
Computational modeling
Convergence
Fuses
graph fusion
Incomplete multi-view clustering
Indexes
Iterative algorithms
Iterative methods
Laplace equations
Optimization
sample weight
title Incomplete Multi-View Clustering With Sample-Level Auto-Weighted Graph Fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A22%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incomplete%20Multi-View%20Clustering%20With%20Sample-Level%20Auto-Weighted%20Graph%20Fusion&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Liang,%20Naiyao&rft.date=2023-06-01&rft.volume=35&rft.issue=6&rft.spage=6504&rft.epage=6511&rft.pages=6504-6511&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3171911&rft_dat=%3Cproquest_RIE%3E2808830498%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808830498&rft_id=info:pmid/&rft_ieee_id=9767686&rfr_iscdi=true