Incomplete Multi-View Clustering With Sample-Level Auto-Weighted Graph Fusion
Incomplete multi-view clustering (IMC) has received considerable attention due to its flexibility in fusing the multi-view information when the view samples are partly missing. However, existing methods seldom consider the affection of the missing samples to the contributions of the views. In this p...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2023-06, Vol.35 (6), p.6504-6511 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Incomplete multi-view clustering (IMC) has received considerable attention due to its flexibility in fusing the multi-view information when the view samples are partly missing. However, existing methods seldom consider the affection of the missing samples to the contributions of the views. In this paper, we propose a novel graph fusion based IMC model (SAGF_IMC) to handle this problem. Instead of directly weighting the whole view, SAGF_IMC learns the sample-level auto weight, which allows considering both the contributions of different views and the affection of the missing samples. An effective iterative algorithm is developed, together with its convergence analysis. Experiments are provided to demonstrate that SAGF_IMC is superior to the related state-of-the-art methods by using several real-world datasets. |
---|---|
ISSN: | 1041-4347 1558-2191 |
DOI: | 10.1109/TKDE.2022.3171911 |