2.5-D Multi-Phase Topology Optimization of Permanent Magnet Motor Using Gaussian Basis Function

This article proposes a novel 2.5-D multi-phase topology optimization method using a Gaussian basis function for permanent magnet motors. The design region in the rotor was sliced into cylindrical layers; the 2-D topology optimization was performed for each layer such that the average torque was max...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2022-09, Vol.58 (9), p.1-4
Hauptverfasser: Otomo, Yoshitsugu, Igarashi, Hajime, Sato, Tomohiro, Suetsugu, Yoshihisa, Fujioka, Eiji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article proposes a novel 2.5-D multi-phase topology optimization method using a Gaussian basis function for permanent magnet motors. The design region in the rotor was sliced into cylindrical layers; the 2-D topology optimization was performed for each layer such that the average torque was maximized, while the torque ripple was suppressed to the maximum possible extent. The proposed topology optimization could determine the rotor core and magnet shapes, as well as the magnetization direction. It was shown that the optimized 2.5-D topology optimization led to better torque performance when compared to conventional 2-D optimizations.
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2022.3171558