Communication Bistatic RCS Estimation Using Monostatic Scattering Centers With Compressive Sensing

This communication presents a novel technique for obtaining bistatic radar cross sections (RCSs) extracted from a monostatic scattering field dataset using a discrete scattering center model and basis pursuit denoising (BPDN) algorithm, which is compressive sensing (CS) technique. With the high-freq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2022-08, Vol.70 (8), p.7350-7355
Hauptverfasser: Noh, Yeong-Hoon, Im, Hyeong Rae, Kim, Woobin, Hong, Ic-Pyo, Yook, Jong-Gwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This communication presents a novel technique for obtaining bistatic radar cross sections (RCSs) extracted from a monostatic scattering field dataset using a discrete scattering center model and basis pursuit denoising (BPDN) algorithm, which is compressive sensing (CS) technique. With the high-frequency assumption, a complex vector of independent point sources is formulated in a monostatic configuration for a geometrical relationship among the transmitter, receiver, and equivalent scatterers. A matrix equation for the scattering problem of an underdetermined form is effectively calculated by an iterative BPDN solver. Then, compensating the phase difference in the bistatic condition can derive the bistatic RCS at specific frequency points and observation angles. The accuracy of the proposed method for extracting bistatic results is verified using two numerical examples, and the performance of the method in terms of measurement efficiency and data resolution in frequency and angle domains is compared with that of conventional method.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2022.3168601