Event-Triggered Model Reference Adaptive Control for Linear Partially Time-Variant Continuous-Time Systems With Nonlinear Parametric Uncertainty
In this work, we develop an event-triggered adaptive control approach for solving the state tracking problem of linear partially time-variant continuous-time systems with the nonlinear state-dependent matched parametric uncertainty under unknown system dynamics. First, an event-triggered model refer...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2023-03, Vol.68 (3), p.1878-1885 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we develop an event-triggered adaptive control approach for solving the state tracking problem of linear partially time-variant continuous-time systems with the nonlinear state-dependent matched parametric uncertainty under unknown system dynamics. First, an event-triggered model reference adaptive controller is designed, which is composed of event-triggered adaptive laws based on the event-updated information and an event-triggering condition depending on the state tracking error of the controlled plant and reference model. Then, the state-tracking error and the error between control parameters and ideal ones of the resulting closed-loop system are proven to be uniformly ultimately bounded. Moreover, based on the designed event-triggering condition, the interevent time between two consecutive triggering points is proven to have a positive lower bound. Finally, a simulation example is provided to show the effectiveness of the proposed approach. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2022.3169847 |