Quenching of the Efficiency Droop in Cubic Phase InGaAlN Light-Emitting Diodes
We show that the coexistence of strong internal polarization and large carrier (i.e., electron and hole) effective mass accounts for ~51% of the efficiency droop under high current densities in traditional (hexagonal-phase) indium-gallium-aluminum-nitride (InGaAlN) light-emitting diodes (h-LEDs) com...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2022-06, Vol.69 (6), p.3240-3245 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the coexistence of strong internal polarization and large carrier (i.e., electron and hole) effective mass accounts for ~51% of the efficiency droop under high current densities in traditional (hexagonal-phase) indium-gallium-aluminum-nitride (InGaAlN) light-emitting diodes (h-LEDs) compared to cubic-phase InGaAlN LEDs (c-LEDs). Our analysis based on variational technique on c-LEDs predicts an enhancement of the current density at the onset of the droop, inherently present in green c-LEDs. These effects are a consequence of the polarization-free nature and small carrier effective mass of c-LEDs. Our analysis indicates that, by overlooking the electron-hole wave function overlap, the well-known ABC model is suspected to overestimate the Auger coefficient, leading to questionable conclusions on the efficiency droop. In turn, it shows that the c-LED efficiency droop is much immune to the Auger electron-hole asymmetry, the increase in the Auger coefficient, and, thus, efficiency degradation mechanisms. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2022.3167645 |