A Quadrotor With a Passively Reconfigurable Airframe for Hybrid Terrestrial Locomotion

Despite efforts to circumvent and alleviate the impact of a mid-flight collision, it remains extremely challenging to safeguard a multirotor vehicle when it operates in cluttered environments. In this work, we introduce a flying robot with the ability to roll through a gap narrower than its diameter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2022-12, Vol.27 (6), p.4741-4751
Hauptverfasser: Jia, Huaiyuan, Bai, Songnan, Ding, Runze, Shu, Jing, Deng, Yanlin, Khoo, Bee Luan, Chirarattananon, Pakpong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite efforts to circumvent and alleviate the impact of a mid-flight collision, it remains extremely challenging to safeguard a multirotor vehicle when it operates in cluttered environments. In this work, we introduce a flying robot with the ability to roll through a gap narrower than its diameter to prevent a possible aerial collision entirely. The novelty of the proposed design lies in a simple passive mechanism that redirects the propelling thrust for the terrestrial operation without the need for extra actuators. As a result, the robot remains compact and lightweight. Furthermore, to overcome the underactuation associated with the passive structure, the transitions between flight and rolling are accomplished with a highly dynamic maneuver. In the experimental demonstration, the robot seamlessly switched between the aerial and terrestrial locomotion to safely negotiate a 10-cm opening.
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2022.3164929