Dynamic Event Tree Analysis as a Tool for Risk Assessment in Nuclear Fusion Plants Using RAVEN and MELCOR

In the broad framework of the nuclear power plants (NPPs) industry, the dynamic probabilistic risk assessment could answer the time dependence deficiency of the event tree and fault tree analysis. The basic event tree approach relies on experts' pre-constructed accident sequences without explor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2022-11, Vol.50 (11), p.4514-4520
Hauptverfasser: D'Onorio, Matteo, Glingler, Tommaso, Giannetti, Fabio, Caruso, Gianfranco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the broad framework of the nuclear power plants (NPPs) industry, the dynamic probabilistic risk assessment could answer the time dependence deficiency of the event tree and fault tree analysis. The basic event tree approach relies on experts' pre-constructed accident sequences without exploring the time-dependent nature of an accident scenario, which could strongly affect the accident sequence. Conversely, the effects of events timing can be studied by adopting a dynamic event tree (DET) approach. Developing a DET methodology requires integrating a system code capable of replicating an accident scenario and a logic-driver code able to generate the event tree sequence, trigger plant safety systems, and manage other relevant events throughout the simulation. For this purpose, Methods for Estimation of Leakages and Consequences of Release (MELCOR) and reactor analysis and virtual control environment (RAVEN) have been coupled through a Python script developed by the Sapienza University of Rome, Rome, Italy, to perform DET studies during accident transients in fusion and fission reactors. RAVEN is a software tool developed at the Idaho National Laboratory (INL), Idaho Falls, ID, USA, to act as a control logic driver and post-processing tool for different applications. MELCOR for fusion is a fully integrated design basis and severe accident code that simulates thermal-hydraulic behavior and self-consistently accounting for aerosol transport in nuclear facilities and reactor cooling systems for the evaluation of the source term in fusion reactors. The coupling between these codes will provide a wide range of NPP risk assessment analyses, establishing new best practices. In this work, a preliminary DET study has been performed, selecting as initiating event an ex-vessel loss of coolant accident (LOCA) in the water-cooled lithium lead test blanket system (WCLL TBS) to be tested in International Thermonuclear Experimental Reactor (ITER). Time-dependent parameters such as the intervention of the plasma shutdown system and the closure of the main system isolation valves have been sampled to study evolving system scenarios.
ISSN:0093-3813
1939-9375
DOI:10.1109/TPS.2022.3165170