Deep-Learning-Assisted Physics-Driven MOSFET Current-Voltage Modeling

In this work, we propose using deep learning to improve the accuracy of the partially-physics-based conventional MOSFET current-voltage model. The benefits of having some physics-driven features in the model are discussed. Using a portion of the Berkeley Short-channel IGFET Common-Multi-Gate (BSIM-C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2022-06, Vol.43 (6), p.974-977
Hauptverfasser: Kao, Ming-Yen, Kam, H., Hu, Chenming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we propose using deep learning to improve the accuracy of the partially-physics-based conventional MOSFET current-voltage model. The benefits of having some physics-driven features in the model are discussed. Using a portion of the Berkeley Short-channel IGFET Common-Multi-Gate (BSIM-CMG), the industry-standard FinFET and GAAFET compact model, as the physics model and a 3-layer neural network with 6 neurons per layer, the resultant model can well predict IV, output conductance, and transconductance of a TCAD-simulated gate-all-around transistor (GAAFET) with outstanding 3-sigma errors of 1.3%, 4.1%, and 2.9%, respectively. Implications for circuit simulation are also discussed.
ISSN:0741-3106
1558-0563
DOI:10.1109/LED.2022.3168243