Reconstructing Saliency Effect in 12/10 DC Vernier Reluctance Machine for Position-Sensorless Drive Aerospace Starter Generator Application

DC-Excited vernier reluctance machine (DC-VRM) using a 12-slot/10-pole-pair design, exhibits the advantages of small torque ripple and low cogging torque due to the inherent commentary characteristic. However, the inherent saliency is canceled out by a 12/10 pole combination of machine design driven...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on energy conversion 2022-09, Vol.37 (3), p.2027-2036
Hauptverfasser: Zhao, Xing, Wang, Weiyu, Niu, Shuangxia, Fu, Weinong N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:DC-Excited vernier reluctance machine (DC-VRM) using a 12-slot/10-pole-pair design, exhibits the advantages of small torque ripple and low cogging torque due to the inherent commentary characteristic. However, the inherent saliency is canceled out by a 12/10 pole combination of machine design driven by a traditional three-phase inverter. As a result, the sensorless operation in zero/low-speed regions becomes difficult because the position estimation methods using self-inductance detection cannot be applied. To tackle this problem, we first analyzed the saliency annihilation phenomenon through Fourier analysis that the odd-order harmonics in self-inductance are canceled. Moreover, reconstructing saliency method is proposed by splitting a phase winding into two sub-phase coils and using parallel H-bridge converters to supply sub-phase coils and achieve sensorless drive. Through this method, the saliency effect is recovered in self-inductance, thereby pulse injection sensorless drive can be applied. The constructed 12/10 DC-VRM sensorless drive shows good fault-tolerant ability and can be applied in safety-critical industry applications such as aerospace propulsion. Analysis and experiments are performed in the initial position detection, start-up and free-running stages to verify the feasibility of the proposed solution. A sector estimation accurate to 6° can be achieved.
ISSN:0885-8969
1558-0059
DOI:10.1109/TEC.2022.3167551