The differentiation of functions of conjugate complex variables: application to power network analysis

The mathematical foundations of the rules used to differentiate functions of conjugate complex variables are examined and their use is illustrated with several power network analysis examples. Using conjugate complex notation in power network analysis, it is possible to obtain directly the real Jaco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on education 1988-11, Vol.31 (4), p.286-291
1. Verfasser: Gonzalez-Vazquez, F.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mathematical foundations of the rules used to differentiate functions of conjugate complex variables are examined and their use is illustrated with several power network analysis examples. Using conjugate complex notation in power network analysis, it is possible to obtain directly the real Jacobian matrix of the power-flow equations. The author introduces the concept of bicomplex Jacobian matrix and states the rules to invert it. The expressions which are above often permit an immediate physical interpretation.< >
ISSN:0018-9359
1557-9638
DOI:10.1109/13.9757