Prediction of Current-Dependent Motor Torque Characteristics Using Deep Learning for Topology Optimization
In this study, we propose a fast topology optimization (TO) method based on a deep neural network (DNN) that predicts the current-dependent motor torque characteristics using its cross-sectional image. The trained DNN is shown to provide the current condition that provides the maximum torque under t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2022-09, Vol.58 (9), p.1-4 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 58 |
creator | Aoyagi, Taiga Otomo, Yoshitsugu Igarashi, Hajime Sasaki, Hidenori Hidaka, Yuki Arita, Hideaki |
description | In this study, we propose a fast topology optimization (TO) method based on a deep neural network (DNN) that predicts the current-dependent motor torque characteristics using its cross-sectional image. The trained DNN is shown to provide the current condition that provides the maximum torque under the assumed motor control method. The proposed method helps perform TO with a reduced number of field computations while maintaining a high search capability. |
doi_str_mv | 10.1109/TMAG.2022.3167254 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9756554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9756554</ieee_id><sourcerecordid>2706894000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-caff7e87ecb546bfd743afc3cf990a930394df6a77ff2e3373e1827992b3d83e3</originalsourceid><addsrcrecordid>eNo9kE9PAjEQxRujiYh-AOOliefF_tvt9khA0QSCBzg3pTvFEtiu7XLAT--uEE8zk3nvzeSH0CMlI0qJelktxrMRI4yNOC0ky8UVGlAlaEZIoa7RgBBaZkoU4hbdpbTrRpFTMkC7zwiVt60PNQ4OT44xQt1mU2igrroOL0IbIl6F-H0EPPky0dgWok-ttwmvk6-3eArQ4DmYWPeT-5M3YR-2J7xsWn_wP6bPv0c3zuwTPFzqEK3fXleT92y-nH1MxvPMclm0mTXOSSgl2E0uio2rpODGWW6dUsQoTrgSlSuMlM4x4FxyoCWTSrENr0oOfIiez7lNDN3TqdW7cIx1d1IzSYpSCUJIp6JnlY0hpQhON9EfTDxpSnSPVPdIdY9UX5B2nqezxwPAv17JvMi77S9VsHQ7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706894000</pqid></control><display><type>article</type><title>Prediction of Current-Dependent Motor Torque Characteristics Using Deep Learning for Topology Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Aoyagi, Taiga ; Otomo, Yoshitsugu ; Igarashi, Hajime ; Sasaki, Hidenori ; Hidaka, Yuki ; Arita, Hideaki</creator><creatorcontrib>Aoyagi, Taiga ; Otomo, Yoshitsugu ; Igarashi, Hajime ; Sasaki, Hidenori ; Hidaka, Yuki ; Arita, Hideaki</creatorcontrib><description>In this study, we propose a fast topology optimization (TO) method based on a deep neural network (DNN) that predicts the current-dependent motor torque characteristics using its cross-sectional image. The trained DNN is shown to provide the current condition that provides the maximum torque under the assumed motor control method. The proposed method helps perform TO with a reduced number of field computations while maintaining a high search capability.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2022.3167254</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Computational modeling ; Control methods ; Convolutional neural networks ; Convolutional neural networks (CNNs) ; deep learning (DL) ; Genetic algorithms ; Machine learning ; Magnetism ; Network topology ; Optimization ; permanent magnet motor ; Topology ; Topology optimization ; topology optimization (TO) ; Torque</subject><ispartof>IEEE transactions on magnetics, 2022-09, Vol.58 (9), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-caff7e87ecb546bfd743afc3cf990a930394df6a77ff2e3373e1827992b3d83e3</citedby><cites>FETCH-LOGICAL-c376t-caff7e87ecb546bfd743afc3cf990a930394df6a77ff2e3373e1827992b3d83e3</cites><orcidid>0000-0002-0852-3231 ; 0000-0002-2605-7908 ; 0000-0002-9521-6837 ; 0000-0003-1531-1103 ; 0000-0002-5197-1531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9756554$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9756554$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aoyagi, Taiga</creatorcontrib><creatorcontrib>Otomo, Yoshitsugu</creatorcontrib><creatorcontrib>Igarashi, Hajime</creatorcontrib><creatorcontrib>Sasaki, Hidenori</creatorcontrib><creatorcontrib>Hidaka, Yuki</creatorcontrib><creatorcontrib>Arita, Hideaki</creatorcontrib><title>Prediction of Current-Dependent Motor Torque Characteristics Using Deep Learning for Topology Optimization</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>In this study, we propose a fast topology optimization (TO) method based on a deep neural network (DNN) that predicts the current-dependent motor torque characteristics using its cross-sectional image. The trained DNN is shown to provide the current condition that provides the maximum torque under the assumed motor control method. The proposed method helps perform TO with a reduced number of field computations while maintaining a high search capability.</description><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Control methods</subject><subject>Convolutional neural networks</subject><subject>Convolutional neural networks (CNNs)</subject><subject>deep learning (DL)</subject><subject>Genetic algorithms</subject><subject>Machine learning</subject><subject>Magnetism</subject><subject>Network topology</subject><subject>Optimization</subject><subject>permanent magnet motor</subject><subject>Topology</subject><subject>Topology optimization</subject><subject>topology optimization (TO)</subject><subject>Torque</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PAjEQxRujiYh-AOOliefF_tvt9khA0QSCBzg3pTvFEtiu7XLAT--uEE8zk3nvzeSH0CMlI0qJelktxrMRI4yNOC0ky8UVGlAlaEZIoa7RgBBaZkoU4hbdpbTrRpFTMkC7zwiVt60PNQ4OT44xQt1mU2igrroOL0IbIl6F-H0EPPky0dgWok-ttwmvk6-3eArQ4DmYWPeT-5M3YR-2J7xsWn_wP6bPv0c3zuwTPFzqEK3fXleT92y-nH1MxvPMclm0mTXOSSgl2E0uio2rpODGWW6dUsQoTrgSlSuMlM4x4FxyoCWTSrENr0oOfIiez7lNDN3TqdW7cIx1d1IzSYpSCUJIp6JnlY0hpQhON9EfTDxpSnSPVPdIdY9UX5B2nqezxwPAv17JvMi77S9VsHQ7</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Aoyagi, Taiga</creator><creator>Otomo, Yoshitsugu</creator><creator>Igarashi, Hajime</creator><creator>Sasaki, Hidenori</creator><creator>Hidaka, Yuki</creator><creator>Arita, Hideaki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0852-3231</orcidid><orcidid>https://orcid.org/0000-0002-2605-7908</orcidid><orcidid>https://orcid.org/0000-0002-9521-6837</orcidid><orcidid>https://orcid.org/0000-0003-1531-1103</orcidid><orcidid>https://orcid.org/0000-0002-5197-1531</orcidid></search><sort><creationdate>20220901</creationdate><title>Prediction of Current-Dependent Motor Torque Characteristics Using Deep Learning for Topology Optimization</title><author>Aoyagi, Taiga ; Otomo, Yoshitsugu ; Igarashi, Hajime ; Sasaki, Hidenori ; Hidaka, Yuki ; Arita, Hideaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-caff7e87ecb546bfd743afc3cf990a930394df6a77ff2e3373e1827992b3d83e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Control methods</topic><topic>Convolutional neural networks</topic><topic>Convolutional neural networks (CNNs)</topic><topic>deep learning (DL)</topic><topic>Genetic algorithms</topic><topic>Machine learning</topic><topic>Magnetism</topic><topic>Network topology</topic><topic>Optimization</topic><topic>permanent magnet motor</topic><topic>Topology</topic><topic>Topology optimization</topic><topic>topology optimization (TO)</topic><topic>Torque</topic><toplevel>online_resources</toplevel><creatorcontrib>Aoyagi, Taiga</creatorcontrib><creatorcontrib>Otomo, Yoshitsugu</creatorcontrib><creatorcontrib>Igarashi, Hajime</creatorcontrib><creatorcontrib>Sasaki, Hidenori</creatorcontrib><creatorcontrib>Hidaka, Yuki</creatorcontrib><creatorcontrib>Arita, Hideaki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aoyagi, Taiga</au><au>Otomo, Yoshitsugu</au><au>Igarashi, Hajime</au><au>Sasaki, Hidenori</au><au>Hidaka, Yuki</au><au>Arita, Hideaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Current-Dependent Motor Torque Characteristics Using Deep Learning for Topology Optimization</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>58</volume><issue>9</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>In this study, we propose a fast topology optimization (TO) method based on a deep neural network (DNN) that predicts the current-dependent motor torque characteristics using its cross-sectional image. The trained DNN is shown to provide the current condition that provides the maximum torque under the assumed motor control method. The proposed method helps perform TO with a reduced number of field computations while maintaining a high search capability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2022.3167254</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-0852-3231</orcidid><orcidid>https://orcid.org/0000-0002-2605-7908</orcidid><orcidid>https://orcid.org/0000-0002-9521-6837</orcidid><orcidid>https://orcid.org/0000-0003-1531-1103</orcidid><orcidid>https://orcid.org/0000-0002-5197-1531</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2022-09, Vol.58 (9), p.1-4 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_9756554 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Computational modeling Control methods Convolutional neural networks Convolutional neural networks (CNNs) deep learning (DL) Genetic algorithms Machine learning Magnetism Network topology Optimization permanent magnet motor Topology Topology optimization topology optimization (TO) Torque |
title | Prediction of Current-Dependent Motor Torque Characteristics Using Deep Learning for Topology Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Current-Dependent%20Motor%20Torque%20Characteristics%20Using%20Deep%20Learning%20for%20Topology%20Optimization&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Aoyagi,%20Taiga&rft.date=2022-09-01&rft.volume=58&rft.issue=9&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2022.3167254&rft_dat=%3Cproquest_RIE%3E2706894000%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706894000&rft_id=info:pmid/&rft_ieee_id=9756554&rfr_iscdi=true |