Prediction of Current-Dependent Motor Torque Characteristics Using Deep Learning for Topology Optimization

In this study, we propose a fast topology optimization (TO) method based on a deep neural network (DNN) that predicts the current-dependent motor torque characteristics using its cross-sectional image. The trained DNN is shown to provide the current condition that provides the maximum torque under t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2022-09, Vol.58 (9), p.1-4
Hauptverfasser: Aoyagi, Taiga, Otomo, Yoshitsugu, Igarashi, Hajime, Sasaki, Hidenori, Hidaka, Yuki, Arita, Hideaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 9
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 58
creator Aoyagi, Taiga
Otomo, Yoshitsugu
Igarashi, Hajime
Sasaki, Hidenori
Hidaka, Yuki
Arita, Hideaki
description In this study, we propose a fast topology optimization (TO) method based on a deep neural network (DNN) that predicts the current-dependent motor torque characteristics using its cross-sectional image. The trained DNN is shown to provide the current condition that provides the maximum torque under the assumed motor control method. The proposed method helps perform TO with a reduced number of field computations while maintaining a high search capability.
doi_str_mv 10.1109/TMAG.2022.3167254
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9756554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9756554</ieee_id><sourcerecordid>2706894000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-caff7e87ecb546bfd743afc3cf990a930394df6a77ff2e3373e1827992b3d83e3</originalsourceid><addsrcrecordid>eNo9kE9PAjEQxRujiYh-AOOliefF_tvt9khA0QSCBzg3pTvFEtiu7XLAT--uEE8zk3nvzeSH0CMlI0qJelktxrMRI4yNOC0ky8UVGlAlaEZIoa7RgBBaZkoU4hbdpbTrRpFTMkC7zwiVt60PNQ4OT44xQt1mU2igrroOL0IbIl6F-H0EPPky0dgWok-ttwmvk6-3eArQ4DmYWPeT-5M3YR-2J7xsWn_wP6bPv0c3zuwTPFzqEK3fXleT92y-nH1MxvPMclm0mTXOSSgl2E0uio2rpODGWW6dUsQoTrgSlSuMlM4x4FxyoCWTSrENr0oOfIiez7lNDN3TqdW7cIx1d1IzSYpSCUJIp6JnlY0hpQhON9EfTDxpSnSPVPdIdY9UX5B2nqezxwPAv17JvMi77S9VsHQ7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706894000</pqid></control><display><type>article</type><title>Prediction of Current-Dependent Motor Torque Characteristics Using Deep Learning for Topology Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Aoyagi, Taiga ; Otomo, Yoshitsugu ; Igarashi, Hajime ; Sasaki, Hidenori ; Hidaka, Yuki ; Arita, Hideaki</creator><creatorcontrib>Aoyagi, Taiga ; Otomo, Yoshitsugu ; Igarashi, Hajime ; Sasaki, Hidenori ; Hidaka, Yuki ; Arita, Hideaki</creatorcontrib><description>In this study, we propose a fast topology optimization (TO) method based on a deep neural network (DNN) that predicts the current-dependent motor torque characteristics using its cross-sectional image. The trained DNN is shown to provide the current condition that provides the maximum torque under the assumed motor control method. The proposed method helps perform TO with a reduced number of field computations while maintaining a high search capability.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2022.3167254</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Computational modeling ; Control methods ; Convolutional neural networks ; Convolutional neural networks (CNNs) ; deep learning (DL) ; Genetic algorithms ; Machine learning ; Magnetism ; Network topology ; Optimization ; permanent magnet motor ; Topology ; Topology optimization ; topology optimization (TO) ; Torque</subject><ispartof>IEEE transactions on magnetics, 2022-09, Vol.58 (9), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-caff7e87ecb546bfd743afc3cf990a930394df6a77ff2e3373e1827992b3d83e3</citedby><cites>FETCH-LOGICAL-c376t-caff7e87ecb546bfd743afc3cf990a930394df6a77ff2e3373e1827992b3d83e3</cites><orcidid>0000-0002-0852-3231 ; 0000-0002-2605-7908 ; 0000-0002-9521-6837 ; 0000-0003-1531-1103 ; 0000-0002-5197-1531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9756554$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9756554$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aoyagi, Taiga</creatorcontrib><creatorcontrib>Otomo, Yoshitsugu</creatorcontrib><creatorcontrib>Igarashi, Hajime</creatorcontrib><creatorcontrib>Sasaki, Hidenori</creatorcontrib><creatorcontrib>Hidaka, Yuki</creatorcontrib><creatorcontrib>Arita, Hideaki</creatorcontrib><title>Prediction of Current-Dependent Motor Torque Characteristics Using Deep Learning for Topology Optimization</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>In this study, we propose a fast topology optimization (TO) method based on a deep neural network (DNN) that predicts the current-dependent motor torque characteristics using its cross-sectional image. The trained DNN is shown to provide the current condition that provides the maximum torque under the assumed motor control method. The proposed method helps perform TO with a reduced number of field computations while maintaining a high search capability.</description><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Control methods</subject><subject>Convolutional neural networks</subject><subject>Convolutional neural networks (CNNs)</subject><subject>deep learning (DL)</subject><subject>Genetic algorithms</subject><subject>Machine learning</subject><subject>Magnetism</subject><subject>Network topology</subject><subject>Optimization</subject><subject>permanent magnet motor</subject><subject>Topology</subject><subject>Topology optimization</subject><subject>topology optimization (TO)</subject><subject>Torque</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PAjEQxRujiYh-AOOliefF_tvt9khA0QSCBzg3pTvFEtiu7XLAT--uEE8zk3nvzeSH0CMlI0qJelktxrMRI4yNOC0ky8UVGlAlaEZIoa7RgBBaZkoU4hbdpbTrRpFTMkC7zwiVt60PNQ4OT44xQt1mU2igrroOL0IbIl6F-H0EPPky0dgWok-ttwmvk6-3eArQ4DmYWPeT-5M3YR-2J7xsWn_wP6bPv0c3zuwTPFzqEK3fXleT92y-nH1MxvPMclm0mTXOSSgl2E0uio2rpODGWW6dUsQoTrgSlSuMlM4x4FxyoCWTSrENr0oOfIiez7lNDN3TqdW7cIx1d1IzSYpSCUJIp6JnlY0hpQhON9EfTDxpSnSPVPdIdY9UX5B2nqezxwPAv17JvMi77S9VsHQ7</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Aoyagi, Taiga</creator><creator>Otomo, Yoshitsugu</creator><creator>Igarashi, Hajime</creator><creator>Sasaki, Hidenori</creator><creator>Hidaka, Yuki</creator><creator>Arita, Hideaki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0852-3231</orcidid><orcidid>https://orcid.org/0000-0002-2605-7908</orcidid><orcidid>https://orcid.org/0000-0002-9521-6837</orcidid><orcidid>https://orcid.org/0000-0003-1531-1103</orcidid><orcidid>https://orcid.org/0000-0002-5197-1531</orcidid></search><sort><creationdate>20220901</creationdate><title>Prediction of Current-Dependent Motor Torque Characteristics Using Deep Learning for Topology Optimization</title><author>Aoyagi, Taiga ; Otomo, Yoshitsugu ; Igarashi, Hajime ; Sasaki, Hidenori ; Hidaka, Yuki ; Arita, Hideaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-caff7e87ecb546bfd743afc3cf990a930394df6a77ff2e3373e1827992b3d83e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Control methods</topic><topic>Convolutional neural networks</topic><topic>Convolutional neural networks (CNNs)</topic><topic>deep learning (DL)</topic><topic>Genetic algorithms</topic><topic>Machine learning</topic><topic>Magnetism</topic><topic>Network topology</topic><topic>Optimization</topic><topic>permanent magnet motor</topic><topic>Topology</topic><topic>Topology optimization</topic><topic>topology optimization (TO)</topic><topic>Torque</topic><toplevel>online_resources</toplevel><creatorcontrib>Aoyagi, Taiga</creatorcontrib><creatorcontrib>Otomo, Yoshitsugu</creatorcontrib><creatorcontrib>Igarashi, Hajime</creatorcontrib><creatorcontrib>Sasaki, Hidenori</creatorcontrib><creatorcontrib>Hidaka, Yuki</creatorcontrib><creatorcontrib>Arita, Hideaki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aoyagi, Taiga</au><au>Otomo, Yoshitsugu</au><au>Igarashi, Hajime</au><au>Sasaki, Hidenori</au><au>Hidaka, Yuki</au><au>Arita, Hideaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Current-Dependent Motor Torque Characteristics Using Deep Learning for Topology Optimization</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>58</volume><issue>9</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>In this study, we propose a fast topology optimization (TO) method based on a deep neural network (DNN) that predicts the current-dependent motor torque characteristics using its cross-sectional image. The trained DNN is shown to provide the current condition that provides the maximum torque under the assumed motor control method. The proposed method helps perform TO with a reduced number of field computations while maintaining a high search capability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2022.3167254</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-0852-3231</orcidid><orcidid>https://orcid.org/0000-0002-2605-7908</orcidid><orcidid>https://orcid.org/0000-0002-9521-6837</orcidid><orcidid>https://orcid.org/0000-0003-1531-1103</orcidid><orcidid>https://orcid.org/0000-0002-5197-1531</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2022-09, Vol.58 (9), p.1-4
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_9756554
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Computational modeling
Control methods
Convolutional neural networks
Convolutional neural networks (CNNs)
deep learning (DL)
Genetic algorithms
Machine learning
Magnetism
Network topology
Optimization
permanent magnet motor
Topology
Topology optimization
topology optimization (TO)
Torque
title Prediction of Current-Dependent Motor Torque Characteristics Using Deep Learning for Topology Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Current-Dependent%20Motor%20Torque%20Characteristics%20Using%20Deep%20Learning%20for%20Topology%20Optimization&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Aoyagi,%20Taiga&rft.date=2022-09-01&rft.volume=58&rft.issue=9&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2022.3167254&rft_dat=%3Cproquest_RIE%3E2706894000%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706894000&rft_id=info:pmid/&rft_ieee_id=9756554&rfr_iscdi=true