Prediction of Current-Dependent Motor Torque Characteristics Using Deep Learning for Topology Optimization

In this study, we propose a fast topology optimization (TO) method based on a deep neural network (DNN) that predicts the current-dependent motor torque characteristics using its cross-sectional image. The trained DNN is shown to provide the current condition that provides the maximum torque under t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2022-09, Vol.58 (9), p.1-4
Hauptverfasser: Aoyagi, Taiga, Otomo, Yoshitsugu, Igarashi, Hajime, Sasaki, Hidenori, Hidaka, Yuki, Arita, Hideaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we propose a fast topology optimization (TO) method based on a deep neural network (DNN) that predicts the current-dependent motor torque characteristics using its cross-sectional image. The trained DNN is shown to provide the current condition that provides the maximum torque under the assumed motor control method. The proposed method helps perform TO with a reduced number of field computations while maintaining a high search capability.
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2022.3167254