Prediction of Current-Dependent Motor Torque Characteristics Using Deep Learning for Topology Optimization
In this study, we propose a fast topology optimization (TO) method based on a deep neural network (DNN) that predicts the current-dependent motor torque characteristics using its cross-sectional image. The trained DNN is shown to provide the current condition that provides the maximum torque under t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2022-09, Vol.58 (9), p.1-4 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we propose a fast topology optimization (TO) method based on a deep neural network (DNN) that predicts the current-dependent motor torque characteristics using its cross-sectional image. The trained DNN is shown to provide the current condition that provides the maximum torque under the assumed motor control method. The proposed method helps perform TO with a reduced number of field computations while maintaining a high search capability. |
---|---|
ISSN: | 0018-9464 1941-0069 |
DOI: | 10.1109/TMAG.2022.3167254 |