Multidimensional Feature Optimization Based Eye Blink Detection Under Epileptiform Discharges

Objectives: Eye blink artifact detection in scalp electroencephalogram (EEG) of epilepsy patients is challenging due to its similar waveforms to epileptiform discharges. Developing an accurate detection method is urgent and critical. Methods: In this paper, we proposed a novel multi-dimensional feat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural systems and rehabilitation engineering 2022, Vol.30, p.905-914
Hauptverfasser: Wang, Meng, Wang, Jianhui, Cui, Xiaonan, Wang, Tianlei, Jiang, Tiejia, Gao, Feng, Cao, Jiuwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objectives: Eye blink artifact detection in scalp electroencephalogram (EEG) of epilepsy patients is challenging due to its similar waveforms to epileptiform discharges. Developing an accurate detection method is urgent and critical. Methods: In this paper, we proposed a novel multi-dimensional feature optimization based eye blink artifact detection algorithm for EEGs containing rich epileptiform discharges. An unsupervised clustering algorithm based on smoothed nonlinear energy operator (SNEO) and variational mode extraction (VME) is proposed to detect epileptiform discharges in the frontal leads. Then, multi-dimensional time/frequency EEG features extracted from forehead electrodes (FP1 and FP2 channels) combining with the improved VME (IVME) threshold are derived for EEG representation. A variance filtering method is further applied for discriminative feature selection and a machine learning model is finally learned to perform detection. Results: Experiments on EEGs of 16 subjects from the Children's Hospital of Zhejiang University School of Medicine (CHZU) show that our method achieves the highest average sensitivity, specificity and accuracy of 95.04, 89.52, and 93.01, respectively. That outperforms 5 recent and state-of-the-art (SOTA) eye blink detection algorithms. Significance: The proposed method is robust in eye blink artifact detection for EEGs containing high-frequency epileptiform discharges. It is also effective in dealing with individual differences in EEGs, which is usually ignored in conventional methods.
ISSN:1534-4320
1558-0210
DOI:10.1109/TNSRE.2022.3164126