Event Classification and Intensity Discrimination for Forest Fire Inference With IoT

Simultaneously occurring random events are often reported by multiple nodes. However, the accuracy of the event detection at every node is dependent on the node's relative position from the event, and hence, not reliable. Moreover, the factors influencing the event inference are so many, that t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2022-05, Vol.22 (9), p.8869-8880
Hauptverfasser: Singh, Vishal K., Singh, Chhaya, Raza, Haider
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8880
container_issue 9
container_start_page 8869
container_title IEEE sensors journal
container_volume 22
creator Singh, Vishal K.
Singh, Chhaya
Raza, Haider
description Simultaneously occurring random events are often reported by multiple nodes. However, the accuracy of the event detection at every node is dependent on the node's relative position from the event, and hence, not reliable. Moreover, the factors influencing the event inference are so many, that the accuracy of such an event detection is compromised. Targeting the problem of accurate event inference in the detection of priority events, such as forest fire, a fuzzy rule-based method is proposed. Four parameters are identified for which fuzzyfied values are obtained by a membership function for every variable. A set of 256 rules are used to generate different permutations of the fire index with respect to the identified variables. Extensive analysis of the results proves the efficacy of the proposed scheme with a significantly reduced error rate of 2.01% for humidity and an error rate of 1.94% for temperature.
doi_str_mv 10.1109/JSEN.2022.3163155
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9744118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9744118</ieee_id><sourcerecordid>2659347040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-3c7dfe4730b82bb5284e2c4fd7c71403e41c976c3d4eee8b7731677aa0b0a6173</originalsourceid><addsrcrecordid>eNo9UMFOwzAMjRBIjMIHIC6ROHckTVq3RzQ2GJrgwBDcojR1RaaRjqRD2t-TqhMX25Lf8_N7hFxzNuWcVXfPb_OXacaybCp4IXien5BJrGXKQZanwyxYKgV8npOLEDaM8QpymJD1_BddT2dbHYJtrdG97RzVrqFL16MLtj_QBxuMt9_Wjcu283TReQw9XViPEdiiR2eQftj-iy679SU5a_U24NWxJ-R9MV_PntLV6-Nydr9KjRBFnwoDTYsSBKvLrK7zrJSYGdk2YIBLJlByU0FhRCMRsawBojcArVnNdMFBJOR2vLvz3c8-PqQ23d67KKmyIq-EBBbPJISPKOO7EDy2ahfdaH9QnKkhPDWEp4bw1DG8yLkZOTYq_-MrkJLzUvwBKzpqyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659347040</pqid></control><display><type>article</type><title>Event Classification and Intensity Discrimination for Forest Fire Inference With IoT</title><source>IEEE Electronic Library (IEL)</source><creator>Singh, Vishal K. ; Singh, Chhaya ; Raza, Haider</creator><creatorcontrib>Singh, Vishal K. ; Singh, Chhaya ; Raza, Haider</creatorcontrib><description>Simultaneously occurring random events are often reported by multiple nodes. However, the accuracy of the event detection at every node is dependent on the node's relative position from the event, and hence, not reliable. Moreover, the factors influencing the event inference are so many, that the accuracy of such an event detection is compromised. Targeting the problem of accurate event inference in the detection of priority events, such as forest fire, a fuzzy rule-based method is proposed. Four parameters are identified for which fuzzyfied values are obtained by a membership function for every variable. A set of 256 rules are used to generate different permutations of the fire index with respect to the identified variables. Extensive analysis of the results proves the efficacy of the proposed scheme with a significantly reduced error rate of 2.01% for humidity and an error rate of 1.94% for temperature.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3163155</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data gathering ; energy efficiency ; Error reduction ; event classification ; Event detection ; Forest fires ; Forestry ; Humidity ; Inference ; intensity discrimination ; IoT ; knowledge extraction ; Parameter identification ; Permutations ; Sensors ; Temperature measurement ; Temperature sensors ; Wind speed</subject><ispartof>IEEE sensors journal, 2022-05, Vol.22 (9), p.8869-8880</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-3c7dfe4730b82bb5284e2c4fd7c71403e41c976c3d4eee8b7731677aa0b0a6173</citedby><cites>FETCH-LOGICAL-c336t-3c7dfe4730b82bb5284e2c4fd7c71403e41c976c3d4eee8b7731677aa0b0a6173</cites><orcidid>0000-0002-3955-0144 ; 0000-0002-5438-579X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9744118$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Singh, Vishal K.</creatorcontrib><creatorcontrib>Singh, Chhaya</creatorcontrib><creatorcontrib>Raza, Haider</creatorcontrib><title>Event Classification and Intensity Discrimination for Forest Fire Inference With IoT</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Simultaneously occurring random events are often reported by multiple nodes. However, the accuracy of the event detection at every node is dependent on the node's relative position from the event, and hence, not reliable. Moreover, the factors influencing the event inference are so many, that the accuracy of such an event detection is compromised. Targeting the problem of accurate event inference in the detection of priority events, such as forest fire, a fuzzy rule-based method is proposed. Four parameters are identified for which fuzzyfied values are obtained by a membership function for every variable. A set of 256 rules are used to generate different permutations of the fire index with respect to the identified variables. Extensive analysis of the results proves the efficacy of the proposed scheme with a significantly reduced error rate of 2.01% for humidity and an error rate of 1.94% for temperature.</description><subject>Data gathering</subject><subject>energy efficiency</subject><subject>Error reduction</subject><subject>event classification</subject><subject>Event detection</subject><subject>Forest fires</subject><subject>Forestry</subject><subject>Humidity</subject><subject>Inference</subject><subject>intensity discrimination</subject><subject>IoT</subject><subject>knowledge extraction</subject><subject>Parameter identification</subject><subject>Permutations</subject><subject>Sensors</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Wind speed</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9UMFOwzAMjRBIjMIHIC6ROHckTVq3RzQ2GJrgwBDcojR1RaaRjqRD2t-TqhMX25Lf8_N7hFxzNuWcVXfPb_OXacaybCp4IXien5BJrGXKQZanwyxYKgV8npOLEDaM8QpymJD1_BddT2dbHYJtrdG97RzVrqFL16MLtj_QBxuMt9_Wjcu283TReQw9XViPEdiiR2eQftj-iy679SU5a_U24NWxJ-R9MV_PntLV6-Nydr9KjRBFnwoDTYsSBKvLrK7zrJSYGdk2YIBLJlByU0FhRCMRsawBojcArVnNdMFBJOR2vLvz3c8-PqQ23d67KKmyIq-EBBbPJISPKOO7EDy2ahfdaH9QnKkhPDWEp4bw1DG8yLkZOTYq_-MrkJLzUvwBKzpqyQ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Singh, Vishal K.</creator><creator>Singh, Chhaya</creator><creator>Raza, Haider</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3955-0144</orcidid><orcidid>https://orcid.org/0000-0002-5438-579X</orcidid></search><sort><creationdate>20220501</creationdate><title>Event Classification and Intensity Discrimination for Forest Fire Inference With IoT</title><author>Singh, Vishal K. ; Singh, Chhaya ; Raza, Haider</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-3c7dfe4730b82bb5284e2c4fd7c71403e41c976c3d4eee8b7731677aa0b0a6173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data gathering</topic><topic>energy efficiency</topic><topic>Error reduction</topic><topic>event classification</topic><topic>Event detection</topic><topic>Forest fires</topic><topic>Forestry</topic><topic>Humidity</topic><topic>Inference</topic><topic>intensity discrimination</topic><topic>IoT</topic><topic>knowledge extraction</topic><topic>Parameter identification</topic><topic>Permutations</topic><topic>Sensors</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Vishal K.</creatorcontrib><creatorcontrib>Singh, Chhaya</creatorcontrib><creatorcontrib>Raza, Haider</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Vishal K.</au><au>Singh, Chhaya</au><au>Raza, Haider</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Event Classification and Intensity Discrimination for Forest Fire Inference With IoT</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>22</volume><issue>9</issue><spage>8869</spage><epage>8880</epage><pages>8869-8880</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Simultaneously occurring random events are often reported by multiple nodes. However, the accuracy of the event detection at every node is dependent on the node's relative position from the event, and hence, not reliable. Moreover, the factors influencing the event inference are so many, that the accuracy of such an event detection is compromised. Targeting the problem of accurate event inference in the detection of priority events, such as forest fire, a fuzzy rule-based method is proposed. Four parameters are identified for which fuzzyfied values are obtained by a membership function for every variable. A set of 256 rules are used to generate different permutations of the fire index with respect to the identified variables. Extensive analysis of the results proves the efficacy of the proposed scheme with a significantly reduced error rate of 2.01% for humidity and an error rate of 1.94% for temperature.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3163155</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3955-0144</orcidid><orcidid>https://orcid.org/0000-0002-5438-579X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-05, Vol.22 (9), p.8869-8880
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_9744118
source IEEE Electronic Library (IEL)
subjects Data gathering
energy efficiency
Error reduction
event classification
Event detection
Forest fires
Forestry
Humidity
Inference
intensity discrimination
IoT
knowledge extraction
Parameter identification
Permutations
Sensors
Temperature measurement
Temperature sensors
Wind speed
title Event Classification and Intensity Discrimination for Forest Fire Inference With IoT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Event%20Classification%20and%20Intensity%20Discrimination%20for%20Forest%20Fire%20Inference%20With%20IoT&rft.jtitle=IEEE%20sensors%20journal&rft.au=Singh,%20Vishal%20K.&rft.date=2022-05-01&rft.volume=22&rft.issue=9&rft.spage=8869&rft.epage=8880&rft.pages=8869-8880&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3163155&rft_dat=%3Cproquest_ieee_%3E2659347040%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659347040&rft_id=info:pmid/&rft_ieee_id=9744118&rfr_iscdi=true