Event Classification and Intensity Discrimination for Forest Fire Inference With IoT

Simultaneously occurring random events are often reported by multiple nodes. However, the accuracy of the event detection at every node is dependent on the node's relative position from the event, and hence, not reliable. Moreover, the factors influencing the event inference are so many, that t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2022-05, Vol.22 (9), p.8869-8880
Hauptverfasser: Singh, Vishal K., Singh, Chhaya, Raza, Haider
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Simultaneously occurring random events are often reported by multiple nodes. However, the accuracy of the event detection at every node is dependent on the node's relative position from the event, and hence, not reliable. Moreover, the factors influencing the event inference are so many, that the accuracy of such an event detection is compromised. Targeting the problem of accurate event inference in the detection of priority events, such as forest fire, a fuzzy rule-based method is proposed. Four parameters are identified for which fuzzyfied values are obtained by a membership function for every variable. A set of 256 rules are used to generate different permutations of the fire index with respect to the identified variables. Extensive analysis of the results proves the efficacy of the proposed scheme with a significantly reduced error rate of 2.01% for humidity and an error rate of 1.94% for temperature.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2022.3163155