The Differential Spectrum of the Power Mapping xpn−3

Let n be a positive integer and p a prime. The power mapping x^{p^{n}-3} over {\mathbb {F}}_{p^{n}} has desirable differential properties, and its differential spectra for p=2,\,3 have been determined. In this paper, for any odd prime p , by investigating certain quadratic character sums...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2022-08, Vol.68 (8), p.5535-5547
Hauptverfasser: Yan, Haode, Xia, Yongbo, Li, Chunlei, Helleseth, Tor, Xiong, Maosheng, Luo, Jinquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let n be a positive integer and p a prime. The power mapping x^{p^{n}-3} over {\mathbb {F}}_{p^{n}} has desirable differential properties, and its differential spectra for p=2,\,3 have been determined. In this paper, for any odd prime p , by investigating certain quadratic character sums and some equations over {\mathbb {F}}_{p^{n}} , we determine the differential spectrum of x^{p^{n}-3} with a unified approach. The obtained result shows that for any given odd prime p , the differential spectrum can be expressed explicitly in terms of n . Compared with previous results, a special elliptic curve over {\mathbb {F}}_{p} plays an important role in our computation for the general case p \ge 5 .
ISSN:0018-9448
DOI:10.1109/TIT.2022.3162334