The Differential Spectrum of the Power Mapping xpn−3
Let n be a positive integer and p a prime. The power mapping x^{p^{n}-3} over {\mathbb {F}}_{p^{n}} has desirable differential properties, and its differential spectra for p=2,\,3 have been determined. In this paper, for any odd prime p , by investigating certain quadratic character sums...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2022-08, Vol.68 (8), p.5535-5547 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let n be a positive integer and p a prime. The power mapping x^{p^{n}-3} over {\mathbb {F}}_{p^{n}} has desirable differential properties, and its differential spectra for p=2,\,3 have been determined. In this paper, for any odd prime p , by investigating certain quadratic character sums and some equations over {\mathbb {F}}_{p^{n}} , we determine the differential spectrum of x^{p^{n}-3} with a unified approach. The obtained result shows that for any given odd prime p , the differential spectrum can be expressed explicitly in terms of n . Compared with previous results, a special elliptic curve over {\mathbb {F}}_{p} plays an important role in our computation for the general case p \ge 5 . |
---|---|
ISSN: | 0018-9448 |
DOI: | 10.1109/TIT.2022.3162334 |