Predictor Control for Non Forward Complete Nonlinear System With Time-Varying Input Delay
We consider \dot {\textrm {X}}(\textrm {t})=\textrm {X(t)}^{2}+\textrm {U}(\textrm {t}-\textrm {D}(\textrm {t})) , where D(t) is a long time-varying delay. If D(t) = 0, \textrm {U(t)}=-\textrm {X(t)}^{2}-\textrm {cX(t)},\,\,\textrm {c}>0 is a simply control, but it just delays finite time esca...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2022-07, Vol.69 (7), p.3299-3303 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider \dot {\textrm {X}}(\textrm {t})=\textrm {X(t)}^{2}+\textrm {U}(\textrm {t}-\textrm {D}(\textrm {t})) , where D(t) is a long time-varying delay. If D(t) = 0, \textrm {U(t)}=-\textrm {X(t)}^{2}-\textrm {cX(t)},\,\,\textrm {c}>0 is a simply control, but it just delays finite time escape for this system. We design a predictor control and prove that the attraction region is \textrm {X}(0) + \sup _{\theta \in [\varphi (0),\,0]} \int _{\varphi (0)}^{\theta } {\frac {\textrm {U}(\theta)}{\varphi ^{\prime }(\varphi ^{-1}(\theta))}\textrm {d}\theta } < \frac {1}{\sigma (0)} , with \varphi (\theta)=\theta -\textrm {D}(\theta) , and \sigma (\theta)=\varphi ^{-1}(\theta) . Further, the predictor control locally exponentially stabilizes this system. |
---|---|
ISSN: | 1549-7747 1558-3791 |
DOI: | 10.1109/TCSII.2022.3158992 |